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Preface  
The cooks cook according to the best recipes, we are judged by university-educated lawyers, 

mathematics professors teach due to programs written by the best, in the way prescribed of a third 

party. What could be wrong with striving for such a perfectly arranged world ς people haven't asked me 

once.  

In that sense, information theory is disappointing. The freedom we desire is the result of the surpluses 

we have in relation to the set of inanimate substances of which we are composed, and the security we 

hope echoes is their principled minimalism. We strive for calm by fleeing from vitality, we adhere to 

security against uncertainty, and we surrender our personal freedoms to the organization. It is the law 

of inertia, the principle of least action, or if you want the principle of economy of information. They are 

just different expressions for more probable occurrence of more probable outcomes.  

That is what is bad in that above sentence ς I would say from the point of view of information theory ς 

that a too well-arranged system necessarily becomes obsolete. The world is inexorably changing and 

moving away. If all the physical phenomena of the universe consist only of information, and the essence 

of this is uncertainty, then escaping into certainty eventually becomes a bad job.  

However, the basic thesis of this philosophy is still only a hypothesis. That is why I write locally and I 

hope globally, so this collection of articles is also private-public. I thank everyone who pointed out my 

mistakes, especially those whose remarks inspired me.  

Author, February 2021. 
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1. Representative Sample   
Rastko Vukoviŏ1, January 30, 2021 

For a given set of random events, I explain the smallest subset that could be sufficiently representative 

of it. I discuss briefly the connection between the Secretary's Problem, the Normal Probability 

Distribution, and the Golden Section, all three within Information Theory.  

Choice of secretary  

In the late 1950s and early 1960s, a simple, partially recreational task of probability theory emerged 

known as the problem of the secretary, or choice of partner, or dowry, that revolved around the 

mathematical community. It has a certain appeal, is easy to point out and has an impressive solution2.  

It was immediately taken over and developed by certain eminent probabilists and statisticians, among 

them Lindley (1961), Dynkin (1963), then Chow, Moriguti, Robins and Samuels (1964), then Gilbert and 

Mosteller (1966). Since then, the secretary problem has been expanded and generalized in many 

different directions, so that it can now be said that it is an area of study within mathematics-probability-

optimization. From Freeman's work (1983) it can be seen how extensive and vast the area has become; 

moreover, it has continued to grow exponentially in the years since its text appeared.  

The secretary problem in its simplest form has the following characteristics. There is one post available 

for the secretary. The Commission knows the number of ὔ applicants and interviews them in random 

order, one by one, not knowing who the next is. The ranking of those interested is detailed enough so 

that there is no significant duplication of the scores of the best, and the decision on the selection is 

based only on previous results. After the rejection of the current candidate, it is not possible to call 

him/her later, and after the acceptance, the further search is suspended. 

In the picture on the left is area ὃ with a row in which the respondents are waiting in front of the room  

 

with the Commission which interviews them 
individually, reviews their applications and awards 
points. In area ὄ, the candidates were examined 
until the ὲ-th, after which, we assume, one of the 
best appeared, with a winning score, which of all 
ὔ could have (approximately) the highest number  

of points and be hired as a secretary. This is an idealized situation where ὄ is just a large enough part of 

the random sequence ὃ (ὄË ὃ and ὲ ὔ) to be a representative sample.  

So, we assume that we have one mathematical expectation shown in the figure3. In a given series of 

uniformly distributed (otherwise random) candidates, approximately every ὲ-th is acceptable for the 

job, so ὴ ρὲϳ  is the probability of finding the άrightέ one. This means that ή ρ ὴ, respectively  

                                                           
1
 Gimnazija Banja Luka, math prof.  

2
 see [10]  

3
 Else, this task is solved differently in the literature. 
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ή ρ                                                                                  (1) 

the probability of άwrongέ. In a series of ὲ candidates (area ὄ of the picture), everyone up to the next is 

άwrongέ, and the probability of such an event is ή . However  

ÌÉÍO ρ  ,                                                                   (2) 

where Ὡ ςȢχρψςψȣ is Euler number, base of natural logarithm. In the case of large arrays (ὔᴼЊ), 

when the scoring of the candidate is very detailed (ὲᴼЊ), then ή ᴼρὩ πȟσχϳ , so the substring ὄ 

makes about 37 percent of the array ὃ.  

The conclusion is that we can solve the problem of choosing the best secretary by missing the first 37% 

of candidates, simply to calibrate the top list of the best, relying on the fact that it is a good enough 

sample. Then we will declare the first next candidate that has the highest number of points established, 

or more than that (and if none of them appears, we are left with the last one) as the best choice.  

Deviations  

We theorize with the assumed άuniverse of uncertaintyέ whose quantities we call information. The laws 

of conservation and thrift apply to them, so the conclusion that free information is equivalent to 

physical actions, and then that living beings are physical systems that have information in excess of in 

relation to the inanimate substance of which they are composed.  

In accordance with the principles of least action and information, living beings try to get rid of their 

surpluses, either directly in an inanimate environment, otherwise already filled and also prone to 

minimalism, or by incorporating them into the organization of the collective to which they belong. In 

that sense, society is a physical phenomenon somewhere between living and non-living systems. Hence, 

for example, the knowledge that an ant colony can have a more intelligent action than its individual ants 

becomes the subject of information theory.  

Unpredictability is at the core of the world in general, so that the ability of society to act and choose 

with more of it grows, and the amount of uncertainty that we measure with information grows not only 

with the increase in the number of options but also with their unexpectedness. This leads to the 

question of the optimal measure of order and vitality of a άcommunity of the livingέ. Namely, regulating, 

organizing and limiting, is the opposite of vitality, that is, opposite to freedom and the amount of 

options. In the behavior of the individuals of the community themselves, the emphasis shifts to 

obedience and disobedience, commonness and unusualness, or passivity and aggression as opposite 

tendencies.  

The greater the dissipation (deviation) in the behavior of individuals, the less organized the community 

is, and on the other hand, with the increase of compactness, its ability to choose decreases and the 

society becomes numb in that sense. From this consideration follows the conclusion that there is some 
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optimum between vitality and efficiency, or risk and safety. This is where the previous άapproximate 

thirdέ (2) becomes important again.  

In the following figure4, we see the Normal (Gaussian) distribution of IQ (otherwise arbitrarily taken 

populations). The intelligence test (IQ score) is set so that the average score of individuals is 100 points 

and that about a third (34.1 percent) of all have άaverage intelligenceέ, from 85 to 115 points. The 

mathematical expectation of the (so-called normal) distribution of points is thus ‘ ρππ, and the 

standard deviation „ ρυ. Two deviations (ς„) then cover the score interval from 70 to 130, and three 

(σ„) almost the entire population. In that, I see a similarity with the solution to the previous problem of 

άchoosing a secretaryέ.  

 

When in the first picture (secretary's choice) we consider area ὃ as the vitality of a living being or their 

organization, then sub-area ὄ is representative enough to expect (statistically) representatives of all 

(from routine to extreme) qualities of the given area. The second picture of the (normal) distribution of 

intelligence is an approximate confirmation (2) that deviations will also occur to that extent. At the same 

time, we do not enter into a discussion about what a particular society considers as άnormalέ and 

άdeviantέ behavior.  

The same can be said as follows. When we rearrange those desirable surprises of the system ὃ, which 

encourage its vitality more, then we will get that they make up a subsystem analogous to ὄ and about a 

                                                           
4
 Taken from the "SPSS tutorials" Facebook, but it could have been from many others. 
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third of all. In other words, the optimum of άdisobedientέ individuals of the άliving systemέ is about a 

third, and the differences are only in the definition of άobedienceέ in the type and intensity of their 

aggression. Hence so much diversity of living beings on Earth.  

Confirmation (application) of this assessment can be found in the histories of the most successful 

civilizations, out of about 30 known ones. The life of society as well as civilization is interrupted by 

violence, suddenly, but if we look only at those who were lucky enough to last, we will notice that each 

consists of some rise, peak and fall. Their flows are similar to life through youth, maturity and old age, 

with the first part more prone to risk, and the second in routines.  

In the case of civilizations, the decline begins with greater self-restraint. Thus, communism fell behind 

due to too much regulation, as well as dictatorship, and at the peak of the Ottoman Empire was 

Suleiman the Magnificent when they called him a άlegislatorέ. It is difficult άon the groundέ to measure 

the άamounts of restrictionsέ that a society has imposed on itself, for example through legislation, 

religious, customary or moral norms, in relation to potential άamounts of freedomsέ, but from the 

previous we can assume that in the period of decline it was greater than 2: 1 in favor of the restrictions.  

Specifically, when the ratio of total vitality of a άliving beingέ tends to be higher than standard (2 : 1, 

approximately) in favor of άordinaryέ versus άunusualέ, then this ratio is re-established in the standard 

form but with a changed overall vitality of the collective and a new definition normality. In the case 

when the community becomes more organized, say safer and more efficient, its vitality decreases. Such 

is at greater risk of lagging behind an environment that would continue to evolve.  

In the case of the emergence of an extreme leader who we say by his ability άdrives manyέ, from the 

point of view of this mathematical certainty it is also a matter of άadjusting the communityέ which 

establishes the previous standard (2 : 1). The organization then goes to a greater or lesser vitality 

depending on the leadership. Not every change, be it euphoric or spontaneous, is a path to betterment 

or ruin, just as it is not every path that followers believe.  

Seemingly a completely different kind of example can be found in today's living organisms on our planet. 

Greed versus empathy within individual species also stands in roughly the same 1: 2 ratio. With too 

many aggressive individuals, their organization would break down, and with too many insightful ones, 

they would become easier prey for others. The diversity of their hierarchies only confirms the theses of 

this discussion. 

Golden ratio  

The whole versus the part is treated as that part versus the rest. That is the definition of the άgolden 

meanέ. If we denote the size of the whole by 1 and the given part by j we have the proportion 

ρȡj jḊρ j, and hence the quadratic equation  

j j ρ π,                                                                        (3) 

whose solution  
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j
Ѝ

πȟφς                                                                       (4) 

we call golden number. The second solution F
Ѝ

ρȟφς is a larger golden number and it is 

reciprocal with the first, jF ρ. What we are also interested in here is the remainder, the difference 

between the whole and the golden value which is ρ j πȟσψ or approximately (2).  

Leonardo da Vinci drew his Vitruvius5 (1487) as a man with ideal proportions, which was later speculated 

(by Luca Pacioli, in Divina proportione, 1509) with a golden section. Johann Kepler wrote that άthe image 

of a man and a woman comes from the divine proportion (golden section). In my opinion, the 

reproduction of plants and the offspring of animals are in the same relationshipέ.  

9Ǌƴǃ [ŜƴŘǾŀƛ analyzes the musical works of Béla Bartók as if they were based on two opposing systems, 

the golden section and the acoustic scale, although other music scholars reject that analysis. French 

composer Erik Satie used the golden ratio in several of his works. The golden ratio is also evident in the 

organization of sections in the music of Claude Debussy (Reflets dans l'eau, 1905).  

A geometric analysis of earlier research from the Great Mosque of Kairouan in 2004 (670) reveals the 

application of the golden section in much of the design. It is assumed that the golden ratio was used by 

the designers of Naqsh-e Jahan Square (1629) and the neighboring Lotfollah Mosque.  

The Swiss architect Le Corbusier, known for his contribution to modern international style, focused his 

design philosophy on systems of harmony and proportion. His faith in the mathematical order of the 

universe was closely tied to the golden ratio and the Fibonacci sequence, which he described as 

άrhythms apparent to the eye and clear in their relations with one another. And these rhythms are at 

the very root of human activities. They resound in man by an organic inevitability, the same fine 

inevitability which causes the tracing out of the Golden Section by children, old men, savages and the 

learned.έ  

The psychologist Adolf Zeising noticed that the golden section appeared in phyllotaxis (arrangement of 

leaves) and based on these patterns he claimed that the golden section is a universal law. In 1854, he 

wrote the universal orthogenetic law άstriving for beauty and completeness in the realms of both nature 

and artέ. In 2010, the journal Science reported that the golden ratio was present on the atomic scale in 

the magnetic resonance of spins in cobalt niobate crystals. However, some claim that many obvious 

manifestations of the golden ratio in nature, especially in terms of animal dimensions, are fictional.  

Where does so much άbeauty in the golden sectionέ come from? From the point of view of our previous 

considerations, we can claim that a standard relationship (representative sample and whole) was built 

into our emotions during evolution to make it easier to recognize the systems around us and predict 

their behavior. Hence, something that is (approximately) in the golden ratio intuitively feels beautiful, or 

harmonious. Compared to the previous one (normal distribution and the secretary problem), we find 

                                                           
5
 Vitruvian Man, https://en.wikipedia.org/wiki/Vitruvian_Man  

https://en.wikipedia.org/wiki/Vitruvian_Man
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that this άharmonyέ is actually a state of optimum, a balance in which the system does not tilt, does not 

strive for some revolutions.  

Conclusion  

Through information theory, we find that the theory of probability behind the normal distribution has 

some additional (among the already known) deeper roots in social and biological phenomena, as 

observed in the appendices [1] in the world of physics. It is also in the background of the άbeautyέ we 

see in the άgolden sectionέ.  
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2. The Reality of Physics  
February 3, 2021  

This is an easy conversation about reality and accuracy of interpretations of physical reality. A couple of 

them ask me privately, and I was free to present the topic publicly and rearrange the answers. 

---------------------------------------------------------------------- 

Question: άWhat is physical reality?έ  

Answer: What science considers άrealityέ is actually an uncertain set of fictions, which are constantly 

changing, supplementing and declaring unscientific.  

Q: I'm seriously asking you. I read that you define άrealέ what can be in physical interaction with 

something real. Is it true again that it is άfictionέ? 

A: Yes, of course, our truths about physical reality are always incomplete, and therefore false. In the 

mathematical sense, if something is άa little incorrectέ, it is άnot trueέ.  

Q: You write supposedly true and false, emphasizing that it is also suspicious?  

A: Yes, but to continue. Take, for example, the flawless geometry of the ancient Greeks and their 

interpretation of our Milky Way galaxy by the goddess Hera who spilled milk. The first was mathematics, 

the second was physics. Throughout history, humanity has always tried and is trying not to combine the 

two, no matter how it seemed to us that physics (not only today) is mathematized.  

Q: What do you mean by geometry and spilling milk?  

A: The geometry would explain the mutual immobility of the parts of the άMilky Wayέ by the huge 

distances, and then by the huge sizes of the άdropsέ of milk. However, from ancient times until recently, 

even the smartest among us, but also many great connoisseurs of geometry and mathematics that 

developed further, gave equal preference to physical lies. They considered their (rare) colleagues who 

would try to destroy their faith in untruths to be hateful and apostates.  

Q: Is there that today?  

A: Well, I'm just telling you that it's a constant story. Until the beginning of the 20th century, physics did 

not believe in molecules, and then it accepted the thermodynamics of Boltzmann (after his death in 

1906), then the First Law of Thermodynamics (on energy conservation), then the Second Law of 

Thermodynamics (on the spontaneous transfer of heat from the body to the environment of lower 

temperatures), so that all chemistry, biology, and even medicine would slowly become άscientificέ only 

when the phenomena could be broken down into molecules and atoms and thus explained.  

Q: And what's stuck there now?  
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A: When the term άsubstanceέ is set from the point of view of άenergyέ, then άactionέ (products of 

energy and time), then άinformationέ ς molecules and atoms will look very strange. It will deviate so 

much from the new άtruthsέ that it will be considered a delusion of 20th century science. They will be 

like the former phlogiston, or alchemy, or the άfour elementsέ of which the world is supposed to consist 

(air, water, earth, fire).  

Q: Why would molecules and atoms be άunscientificέ?  

A: It will be, because physics has long since adopted Louis de Broglie thesis (1924) on waves of electron. 

All matter can be defined only by waves and all its consequences can be derived from wave equations 

(Schrödinger, 1926). That is why we have a particle-wave structure of matter, and that άparticleέ part 

(read my interpretation of the Compton Effect6) will be slowly neglected.  

Q: I read (The Undamaged Crown of King Syracuse7), but what's the point?  

A: The Compton Effect was once proof of the corpuscular nature of light (it was known to be a wave). 

Particles (photons) are scattering in the way described by Compton (1922) that, based on the 

conservation of momentum and energy, the wavelength of the rejected photon increases (therefore, 

Compton proved the corpuscular nature by means of wave nature). However, it further follows from the 

information theory (mine) that this increase in the wavelength of the reflected photon speaks of a 

greater blurring of the photon on the path, i.e. about the greater uncertainty of its position. It turns into 

less probable paths (lower probability densities) only under the action of some force, or as in this case 

due to a collision with another body (electron).  

Q: So, what do you mean?  

A: From previous misconceptions (mechanistic and materialist understanding of the world), physics has 

moved to atomistic, then to quantum physics. I believe that in time, it will move to the άinformation 

universeέ, which, like every previous model, will be with some kind of fault. At the same time, the reality 

was always wrong, although it was getting wider. It has also become what is too small for our senses 

(molecules, atoms, quanta), or what is too far away for us as a deep universe, which, by the way, we see 

only as light that came to us from some distant past.  

By adopting that άwhat interacts with the realέ is real, we will also adopt άparallel realitiesέ with which it 

is possible to interact only indirectly, and by adopting that άinteractionέ is equivalent to 

άcommunicationέ, it will become άrealέ although we can perceive it only by logic. And the question then 

is, aren't molecules a product of our logic more than a matter of immediate sensory perceptions?  

Q: How will you explain the world άwithout moleculesέ?  

A: By the law of conservation, by the principle of least action and communication. For example, I will 

look at the expression Ὓ ὥὼ ὦώὧᾀỄ, which represents άperception informationέ when the 

                                                           
6
 https://www.academia.edu/40105675/Compton_Effect  

7
 http://izvor.ba/rastko-vukovic-neostecena-kruna-kralja-sirakuze/  

https://www.academia.edu/40105675/Compton_Effect
http://izvor.ba/rastko-vukovic-neostecena-kruna-kralja-sirakuze/
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sequences ὥȟὦȟὧȟȣ  and ὼȟώȟᾀȟȣ  represent two opposing computer quantities. They are 

components of the vectors; their product is larger when the larger component is multiplied by the 

larger, and the product is smaller when the larger components of one series are multiplied by the 

smaller ones of the other, and the smaller with the larger.  

In game theory, Ὓ would be the άvitalityέ (intensity of the game), which is higher when the opponent 

responds to a strong game with a strong one and to a weaker one with a weak one. In the economy, it 

would be a more dynamic society with good competition, and similarly in politics. In physics we would 

have less Ὓ, more precisely minimal, because of the law of least action; then the subject is less opposed 

to the stronger obstacle.  

Q: More άperception informationέ means more liveliness and less passivity?  

A: Yes, larger Ὓ belongs to άliving beingsέ and less to inanimate matter. But we won't talk about it now, 

it's a broad topic of information theory, still with a lot of speculation.  

Q: What are you aiming for with such άexplanationsέ?  

A: The assumption that every mathematical truth, every abstraction of it, will eventually become a kind 

of physical reality. I look back at what I have written many times, in different ways (see [1] and [2]).  
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3. Special Unitary Group   
February 7, 2021 

In mathematics, a special unitary group of degree ὲ, denoted SU(ὲ), is a Lie group8 of type ὲ ὲ unitary 

matrices determinant one. The group SU(2) is closely related to the group SU(3) and plays an important 

role in quantum physics.  

SU(2) 

In linear algebra, a complex quadratic matrix ἣ of order ὲᶰᴓ is άunitaryέ if its conjugately transposed 

matrix ἣ  is also inverse to it. In other words, if it is  

ἣἣ ἣἣ ἓ,                                                                        (1) 

where ἓ is a unit matrix of the same order.  

An arbitrary complex number ᾀ ὼ Ὥώɴᴇ has real parameters ὼȟώɴ ᴙ, the first of which is called its 

άreal partέ, the notation 2Åᾀ, and the second the άimaginary partέ, the notation )Íᾀ. For the 

imaginary unit, Ὥ ρ also holds. Conjugated to the number ᾀ is the complex number ᾀᶻ ὼ Ὥώ, so 

that their product is real, ᾀᶻᾀ ὼ Ὥώὼ Ὥώ ὼ ώ ȿᾀȿ. Associated with the matrix ἣ is the 

(adjoint, adjugate) matrix ἣ , transposed by it and with conjugated corresponding elements.  

We call a άgroupέ a structure (G, *) consisting of the set G and a binary operation * that satisfies the 

following four axioms:  

1. (closedness) for each ὥȟὦɴ Ὃ the result of ὥz ὦ is also in Ὃ;  

2. (associativity) for each ὥȟὦȟὧɴ Ὃ  being ὥz ὦ ὧz ὥz ὦz ὧ;  

3. (neutral) there is Ὡɴ Ὃ  such that for every ὥᶰὋ is Ὡz ὥ ὥz Ὡ ὥ;  

4. (inverse) for every ὥᶰὋ there is ὦɴ Ὃ such that ὥz ὦ ὦz ὥ Ὡ, where Ὡ is neutral.  

It can be shown that the group has exactly one neutral, that the inverse of the given element is unique, 

and that the left and right inverses are the same elements. When for each pair of elements ὥȟὦɴ Ὃ 

their product is commutative, ὥz ὦ ὦz ὥ, the group is called commutative or Abelian.  

If ÄÅÔἣ ρ, the square matrix ἣ of order ὲ is called άunimodularέ. The set of all complex ὲ-th order 

matrices that are both unimodular and unitary forms a group if the multiplication of the matrices is 

taken as a group operation. This group is called the group of unitary unimodular matrices of the ὲ-th 

order and is denoted by SU(ὲ). In other words, it is a special unitary group of order ὲ.  

For quantum physics, the most interesting group SU(2) has a matrix  

ἣ
ό ό
ό ό ,                                                                         (2) 

                                                           
8
 https://en.wikipedia.org/wiki/Lie_group  

https://en.wikipedia.org/wiki/Lie_group
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for which ÄÅÔἣ ρ and ἣἣ ἓ, from which it follows: ό ό ό ό ρ and  

όᶻ όᶻ

όᶻ όᶻ
ό ό
ό ό

ρ π
π ρ

,                                                     (3) 

where matrix equation (3) replaces four linear equations, three of which are independent:  

όᶻό όᶻό ρ
όᶻό όᶻό ρ
όᶻό όᶻό π

.                                                                 (4) 

From there:  

όᶻ όᶻ Ͻρ όᶻ ό ό ό ό ό όᶻό όᶻό ό , 

όᶻ ό όᶻ όᶻό ό ρϽό ό ,  

όᶻ ό .                                                                          (5) 

Too:  

ό ρϽό όᶻόᶻ όᶻόᶻ ό όᶻό όᶻ όᶻ όᶻό ,  

ό όᶻό όᶻ όᶻ όᶻό όᶻό όᶻό όᶻ ρϽόᶻ ,  

ό όᶻ .                                                                             (6) 

Therefore, each ἣᶰ35ς matrix (2) has the shape  

ἣ
ὺ ύ
ύᶻ ὺᶻ

,   ȿὺȿ ȿύȿ ρ,                                                                   (7) 

i.e. it is given with two complex parameters, here ὺȟύᶰᴇ.  

In particular, when the coefficients of the matrix (7) are real numbers it is a classical rotation  

ἣ
ÃÏÓ• ÓÉÎ•
ÓÉÎ• ÃÏÓ•

,                                                     (8) 

for the angle •. As it is known from elementary geometry, all symmetries, more precisely isometric 

transformations such as translation, reflection (central, axial, mirror) and rotation, can be reduced to 

rotations themselves. This is the universality of the matrix (8) and the group SU(2) in general.  
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Special matrices  

Second-order matrices are a type of vector space whose base consists of a unit matrix (3) and three 

quaternions9, linear operators whose matrices are:  

ή
π Ὥ
Ὥ π

,   ή
π ρ
ρ π

,   ή
Ὥ π
π Ὥ

.                                 (9) 

The relation sx Ὥήx  (x ὼȟώȟᾀ) defines Pauli matrices (operators), which also form a (new) base of 

the same space of matrices (operators) of the second order. These are also the bases of the SU(2).  

Note that for Pauli operators (matrices) the equations are valid:  

sxsh shsx ςὍ‏xh ,                                                          (10) 

where Ὅ is a unit operator (matrix representations ἓ), and  

xh‏
ρ x h

π x h
                                                                   (11) 

is the Kronecker delta symbol. The equations also apply  

ss ss ςὭs

ss ss ςὭs

ss ss ςὭs

                                                             (12) 

which is easy to check by directly multiplying the corresponding matrices.  

Conservation law  

From the needs of physics for SU(2) and quantum evolution in general, which are representations of 

reversible operators due to which all assumptions can be obtained from the consequences of quantum 

transformations, which more freely means that quantum processes remember. Hence, one of the proofs 

of the conservation law for the information.  

Namely, the invertibility of quantum operators is the type of symmetry that Noether's theorem10 speaks 

of. A system of linear equations written in the matrix Ἃ ὥmn  is  

Ἃὀ ὁ                                                                               (13) 

is regular (invertible) if using the values of the copies, the elements of the vector ὁ ώȟώȟȣȟώ , we 

can find out the values of the original, the components of the vector ὀ ὼȟὼȟȣȟὼ . Then there 

exists an inverse matrix Ἃ  such that  

                                                           
9
 see [3], 2.4.6 Generalization  

10
 see [2], 1.14 Ammy Noether  
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Ἃ Ἃ ἋἋ ἓ,                                                                     (14) 

where ἓ is the unit matrix. Comparing with (1), we see that such are all unitary matrices, and then that 

all quantum processes are such.  

Mass and time  

The attitude that with the increase of entropy (thermodynamics) its information decreases is not in 

contradiction with the spontaneous growth of entropy, if we generalize it mostly to the substance. The 

lost information of matter then becomes space-time information. This is in line with the assumption that 

space, time and matter are all made of the information.  

Then space remembers, and memory as a kind of information also affects something. An example of the 

action of the past of space on the present is gravity, ie bodies that have (large) mass. I have written 

about it several times11, and now I will compare it with the άmechanismέ of the recently confirmed Higgs 

boson (2012) and its field. To understand what I'm comparing it to, look at the attachment12, or at least 

part of it, the quote I singled out at the end.  

Photons and all particles moving at the speed of light do not have their own (proper) time. They do not 

have a mass of rest, their own time stands still and they άborrowέ time from observers. Particles that 

travel at the speed of light are trapped in the observer's present and in that sense have only three 

dimensions (two belong to information and time to the observer). Therefore, they are not able to 

independently penetrate through the layers of time, through anyone (from the past to the present, or 

through parallel realities), so by communicating with such, all their other relative subjects (observers) by 

them can define its present.  

The principle of economy of information refers especially to those other particles that have their own 

time, the more they penetrate the layers of time. The time does not stand for such, and they have a 

mass of rest. The principle of least action, ie the least information (action and information are 

equivalents), slows them down, that principle (thrift) makes them inert in a way that is equivalent to 

άhaving massέ.  

That part of information theory will explain the existence of the Higgs boson, which is also called the 

particle of God (Leon Lederman, 1993). Finally, here is the promised quote.  

άΧ Physicists at the time (1964) were trying to understand why some particles had more mass than 

ƻǘƘŜǊǎ όǘƻ ǎǳƳ ǘƘŜ ǇǊƻōƭŜƳ ŀƴƻǘƘŜǊ ǿŀȅΥ ²Ŝ ŘƻƴΩǘ ǳƴŘŜǊǎǘŀƴŘ ǿƘȅ ŎŜǊǘŀƛƴ ǇŀǊǘƛŎƭŜǎ ƘŀǾŜ ƳŀǎǎΤ ƛǘΩǎ 

ōŜƭƛŜǾŜŘ ǘƘŀǘ ŀƭƭ ŦƻǊŎŜ ŎŀǊǊȅƛƴƎ ǇŀǊǘƛŎƭŜǎ ǎƘƻǳƭŘ bh¢ ƘŀǾŜ ƳŀǎǎΦ ¢ƻ ǘƘŜ ŎƻƴǘǊŀǊȅΣ ǿŜΩǾŜ ƭŜŀǊƴŜŘ ǘƘŀǘ 

particles that carry weak force do have mass). We needed to know what was the driving force is behind 

this mechanism.  

This is where Peter Higgs stepped in.  

                                                           
11

 see [1], 11. Force and Information  
12

 https://futurism.com/what-is-the-higgs-field-and-higgs-boson  

https://futurism.com/what-is-the-higgs-field-and-higgs-boson
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He was able to come up with a theory which suggested that there was an energy field that all particles in 

the Universe interacted with. In essence, the more massive the particle, the more it interacted with this 

field. Conversely, the less massive particles interacted with this field lessΧ  

The Higgs boson is the gauge boson (carrier) of the Higgs Field, just as the photon is responsible for 

9ƭŜŎǘǊƻƳŀƎƴŜǘƛŎ CƛŜƭŘΣ ǘƘŜ ² ŀƴŘ ½ ōƻǎƻƴΩǎ ŀǊŜ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǘƘŜ ²Ŝŀƪ bǳŎƭŜŀǊ Force, and the Gluon is 

responsible for the Strong Nuclear Force .ΦΦΦέ  

Hermitian matrix   

The self-adjoint matrix, or άhermitian matrixέ, is a complex square matrix Ἃ ὥxh  that is equal to the 

conjugate-transposed to itself, Ἃ Ἃ . In other words, a complex number that is an element of the x-th 

row and the h-th column of a given Hermitian matrix is equal to the conjugate element of the h-th row 

and the x-th column, ὥxh ὥhx
ᶻ.  

That is why the diagonal elements of these matrices must be real numbers, because they are the only 

ones conjugated to themselves. A square matrix with real coefficients is Hermitian only if it is symmetric. 

Every Hermitian matrix is normal13, because obviously ἋἋ ἋἋ.  

It is known that the άspectral theoremέ applies to finite dimensional vector spaces, which says that any 

Hermitian matrix can be diagonalized (mapped into diagonal) by means of a unitary matrix and that this 

diagonal matrix has only real coefficients. Hence, all eigenvalues of the ὲ-dimensional Hermitian matrix 

are real and it has ὲ linearly independent eigenvectors.  

As only real eigenvalues in quantum mechanics can represent observable (measurable physical 

quantities) hermitic matrices, together with unitary ones, are the basis of quantum physics. Quantum 

states (particles-waves) are representations of vectors, and the processes over these vectors are 

representations of these operators. Vectors are superpositions of measurement outcomes, we will also 

say probability distributions, so the unitarity of operators preserves the unit norm of superposition, and 

Hermitian operators help predict observables.  

Epilogue  

This brief overview is, I hope, only a reference to which I can refer in the further interpretation of the 

άHiggs mechanismέ and the application of άƛnertia due to timeέ to the masses in general. I have written 

much more, more extensively and in more detail about unitary and Hermitian operators before, but 

conciseness also has its value.  

 

  

                                                           
13

 normal matrix ς commutes with itself conjugated-transposed 
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4. Big Bang  
On the development of the universe from the point of view of information theory 

February 9, 2021 

This is a more promising version about the universe, considering the new information theory. 

Introduction  

Space, time and matter consist of information and its essence is uncertainty. Information is equivalent 

to action14 (product of energy and time), the law of conservation applies to both, and due to the 

assumed uncertainty, particles communicate (interact) because they do not have everything. 

Consistently, we assume that multiplicity and selectivity are properties of the real world. Every subject 

around us has some information, and so is the universe itself.  

What we can prove that can't happen ς it doesn't happen, so the information is true. That is why we 

consider all-time truths, such as mathematical statements, to be information. If their duration is infinite, 

their energy is zero. In particular, the future is not άwritten downέ in a way inaccessible to us, but is 

άobjectively uncertainέ; it arises unpredictably from infinity15, whereby the finitudes of the world 

perceptions become connected with the infinite.  

Expansion  

In 1912, Slipher16 noticed a redshift of distant galaxies, which was later interpreted as its moving away 

from Earth. In 1922, Friedmann17 was the first to use Einstein's field equations to theoretically prove the 

expansion of the universe, and it is believed that Lemaître18 came to it independently in 1927, who also 

calculated the speeds of galaxy distances. Lemaître's estimates were confirmed by Hubble19 by 

observation two years later.  

Then the άcosmological principleέ is assumed, which says that all galaxies are moving away from each 

other. An imaginary 2-dimensional model of space is the surface of a balloon that we inflate with points 

representing galaxies that move away in this way. I talked to my colleagues about such official positions 

of cosmology so that they would eventually ask me about the attitude of άinformation theoryέ (mine) 

about all this. Here is my answer.  

What I can tell are the speculations themselves, but there are more likely ones among them. For 

example, in the aforementioned text άFlows of Eventsέ you could notice that I distinguish two groups of 

elementary particles, perhaps fermions and bosons, of which the former are at least a little more likely 

to transform into the latter. Therefore, one should consider the universe of the majority of the first 

                                                           
14

 see [1], 23. Action and Information 
15

 see [2], 3.19 Flows of Events  
16

 Vesto Slipher (1875-1969), American astronomer.  
17

 Alexander Friedmann (1888-1925), Russian physicist and mathematician.  
18

 Georges Lemaître (1894-1966), Belgian priest and professor of physics. 
19

 Edwin Hubble (1889-1953), American astronomer.  
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particles, which is slightly but constantly changing into the universe of particles of the second kind. So 

the universe of matter becomes the universe of space.  

In that sense, the spontaneous growth of entropy refers to the substance, and the information that is 

lost passes into space. To this unusual transition can be added the idea of a space that remembers what 

I wrote about earlier in various seemingly independent ways. Space grows at the expense of the 

substance, but it also grows with άbiographies of particlesέ that move through it and do not grow.  

The information theory I advocate may seem strange, because it offers an unusual view of the world 

around us, but it is not illogical. It is such that it requires some information in every free particle, and in 

its extreme form in every phenomenon, including memories. In order for the law of conservation to 

survive, for the present and the overall history of the closed physical system we observe, it is necessary 

to dampen the influences of the aging past on the present and make it equal to the loss of current 

information. It's an easy task for calculation.  

That there is a loss of on-going substance, I said, stems from an increase in entropy and a corresponding 

decrease in information. On the other hand, the same is also a consequence of the principled economy 

of information transmission, i.e. more probable occurrence of more probable events, which are 

otherwise less informative. In other words, the present is evolving towards more likely outcomes.  

A special question is where did so much of the present come from? From the point of view of 

Heisenberg's relations of uncertainty and then the existence of noncommutative operators from which 

the corresponding principle of uncertainty follows, it is not enough to imagine the future of the universe 

as a static warehouse of events from which we randomly choose outcomes. That would mean that 

certainty exists but is not available to us. It would mean that we can deceive the noncommutativity of 

the operators and Heisenberg's relation of uncertainty. Perhaps this consideration was exactly why I 

switched from a moderate form of information theory to an extreme one.  

The law of conservation is valid because the perceptions (us, the subjects of the universe, the particles) 

are finite. For infinite sets, such a thing is not possible, because they are by definition such that they can 

be its own, proper subsets. From infinity, the final parts can be άtorn offέ indefinitely and it always 

remains as it was. Therefore, we can imagine that the present arises from parts of some infinity in 

additionally uncertain ways, and even that these infinities are the mentioned all-time truths, and then 

special types of information.  

Since the free information (that can travel as a separate particle) is equivalent to the action (product of 

exchanged energy and duration), all-time information will have zero energy. In this way, we find that the 

very beginning of the universe, which is the ά.ig BangέΣ is actually an unattainable moment when time 

flowed at infinite speed in relation to ours.  

Thus, we enter the second part of this story about the universe, which may seem like a special version of 

its origin and spread, but which I would not separate from the previous one, at least for now. 
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Relativity  

From the point of view of any (average) moment of the past, we can consider that the time of our 

present is flowing more and more slowly, for example, as if we are falling20 into an ever stronger 

gravitational field. Conversely, from the present point of view, the passage of time of the increasingly 

older past would seem increasingly faster to us.  

In that sense, a traveler who would go back in time with a time machine could need an infinite amount 

of his own (proper) time to get to the beginning of everything, to the time of the ά.ig Bangέ. Together, a 

relative observer from our (current) present could estimate the duration of ǘƘŜ ǘǊŀǾŜƭŜǊΩǎ journey by 

only 13.8 billion years, or as long as we consider the universe to be old.  

Because the relative time of our present is flowing more and more slowly, and radially from us at 

growing up distances, the lengths seem increasing, we observe the distancing of galaxies. In this way, we 

could observe the going away of galaxies even if they are static. However, taking into account the 

relativistic effects, we could get that they move away just as fast as it is necessary to cancel the 

relatively faster flow of their time in relation to ours and relatively larger units of length.  

Epilogue  

It is amazing how inspiring this seemingly innocuous version of the universe was for the interlocutors, 

for connecting and inventing various scenarios of science fiction stories, and believes me or not, it also 

has mathematically interesting sequels. But about when the time comes.  

 

 

  

                                                           
20

 I say to note that the laws of physics and especially the laws of conservation can remain  
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5. Dwarf Galaxies  
February 14, 2021 

What is your opinion about dwarf galaxies that might be without άdark matterέ in their entourage? ς It 

is one of the questions I get from colleagues regarding new cosmological research. The ones about 

άgravity through timeέ, which are gaining in importance with new knowledge, and give my earlier 

speculative answer on weight, are the topic of this story. 

Small and large mass 

I have a positive expectation about finding weaker masses in space21 that would not be accompanied by 

dark matter. It comes to information theory as one of the additional hypotheses worth considering, 

which follows from the following three settings. The fourth is the explanation.  

First, conics (ellipses, parabolas, hyperbolas) are trajectories of motion caused by a constant central 

force if and only if that force decreases with the square of the distance. This is a theorem that I also 

proved (see [1]). Then the statement follows that the field of force expands at the speed of light only if 

the central force decreases with the square of the distance. It is known that the Coulomb force 

(electromagnetic) has both properties.  

Secondly, these are the planets of the solar system that move in ellipses, all except Mercury. Mercury 

seems to be pulling its ellipse; its perihelion rotates following the direction of Mercury's rotation, which 

means that its exact path is not exactly an ellipse. This άdeviationέ is predicted by the general theory of 

relativity and is interpreted by the proximity of the Sun, that is, by the strong gravitational field torsions.  

Third, our information universe has three spatial dimensions and three temporal ones. When we take 

four of these six (perhaps any) and declare three spatial (ὼȟὼȟὼ) and the fourth temporal (ὼ Ὥὧὸ) ς 

the same22 Einstein's23 equations of general relativity will apply as Klein-Gordon's (relativistic) quantum 

mechanics. From this we draw the conclusion that a force acting through space could also act through 

time (say from the past to the present, and perhaps vice versa) if the carriers of that force (in this case 

gravitational waves, then their elementary particles ς gravitons) had their own (proper) duration.  

Fourth, the light (photons ς particles of electromagnetic radiation) do not have a rest mass, time stands 

still. They therefore exist in only three dimensions; say in the planes of their information and the time of 

the observer. From the upper (first) gravitons also move at the speed of light, except in the vicinity of a 

strong gravitational field. Hence, a strong gravitational field acts through its own time too, but a weakly 

is not.  

Dwarf galaxies, therefore, will not have their άdark matterέ as their companion from the past, if their 

mass is insufficient for a longer time. Massive galaxies, on the other hand, will leave a trail in the past 

that will attract them (the action of the past on the present), just as Mercury is more attracted to its 

                                                           
21

 Like: https://phys.org/news/2020-09-physicists-mysterious-dark-deficiency-galaxy.html  
22

 see [2], 3.30 Delayed Gravity  
23

 Albert Einstein (1879-1955), German-born theoretical physicist. 

https://phys.org/news/2020-09-physicists-mysterious-dark-deficiency-galaxy.html
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younger positions that it finds in front of it compared to the older ones behind (stronger action of the 

closer past to the present), and would make it (the dark matter) to orbit around the present of these 

galaxies like other bodies (I do not exclude and the possibility of the action of the present on the past).  

Penetration through time  

Where can I read about the action of gravity over time? ς Another interesting question to me recently, 

not by the same colleague but on a similar topic. It also refers to an earlier hypothesis, derived from an 

older and as yet unidentified άinformation theoryέ, in various forms and with different consequences.  

For example, read the appendix ά3.30 Delayed Gravityέ from popular information stories [2], I said. If it 

seems good, look at more complex representations (in the formulas of general relativity and quantum 

mechanics). In a short retelling, to see if it was worth reading, the conversation went something like this.  

The point is on Einstein's field equations  

Ὃ LὫ kὝ                                                                      (1) 

where three spatial coordinates can be ὼ ὼ, ὼ ώ, ὼ ᾀ, and the fourth the time is ὼ Ὥὧὸ with 

imaginary unit (Ὥ ρ), speed of light (approximately c=300 000 km/s) and duration ὸ, actually the 

length that light travels in the given time. Another important factor is the Klein-Gordon equation  

m f π                                                (2) 

of the quantum mechanics. Here f fὼȟὼȟὼȟὼ  is a (pseudo) scalar function, in the general case 

complex. When ά is the rest mass of the particle, and Ὤ φȟφςφρπ  Js Planck's constant, then we 

can write this equation with m ς“άὧȾὬ. If f is a real function, the Klein-Gordon equation describes 

neutral (pseudo) scalar particles, and if f is complex it (2) describes charged particles.  

Information theory is needed for a deeper understanding of the symmetry of spatial and temporal 

coordinates. As a starting point, I suggest you read a short popular text ά2.13 Space and Timeέ from 

άLnformation StorƛŜǎέ [2]. This 6D space-time universe should not be viewed as άthree spatial and three 

temporalέ coordinates, if it is possible to choose any four of them six, and declare three ŀǎ άspatialέ and 

the rest one ŀǎ άtemporalέ.  

When we consider one of the lengths as the product of an imaginary unit, the speed of light and 

duration (ὼ Ὥὧὸ), it thus becomes temporal. Due to the first of its factors, άtime lengthέ gets a new 

reality by squaring and appears in the denominator of the gravitational force (which decreases with the 

square of the distance). For the second, in real time (of our order of magnitudes) that square in the 

denominator makes the fraction terribly small (a very small number), which approaching to zero quickly 

and too fast every second. That is why this aspect of gravitational force is difficult to register, and then 

even more difficult because it occurs only in very strong fields (in the immediate vicinity of the Sun and 

stronger ones), in which Mercury is barely located.  
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When asked why Mercury, I say that its orbit is not an exact ellipse, because the perihelion of that 

άellipseέ is retreating behind the planet, which can now be interpreted as a stronger action closer to its 

own past. Other celestial bodies farther from the Sun do not have that retreat, and all of that together 

supports the theses about the non-action of weak gravity through time.  

To answer the question of where this (non) action came from, I said that more of the information theory 

is needed. More precisely, we need the άprinciple of minimalismέ of information, or more loosely, the 

άprinciple of least actionέ (I consider information and action to be formal equivalents) known in physics.  

This principled minimalism is the cause of inertia. Mass has its proper (own) time, unlike light, which 

means that it personally penetrates through the layers of time, and then άstumblesέ due to the 

mentioned principle. In order for gravitational waves (gravitons) to have such penetration, they must 

move (at least a little) slower than light, and this could only happen within a very strong gravitational 

field.  

Namely, if the waves of the field (constant central) force travel at the speed of light then and only then 

the force decreases with the square of the distance, and if the force decreases with the square of the 

distance then and only then the trajectories are forced to be conical. However, we have a deviation 

from the conic (ellipse) in the case of strong gravity, but not in the case of weak gravity, which means 

that only gravitons of strong fields travel slower than light and have mass.  

Please note, these are still just (my) hypotheses from before, regardless of what recent discoveries in 

cosmology add to their significance.  

Gravitational waves  

Gravitational waves are space-time curvature disorders generated by accelerated masses. They were 

proposed by Poincaré24 in 1905, and later in 1916 by Albert Einstein on the basis of his general theory of 

relativity. They transmit energy as gravitational radiation, which Newton's law of universal gravitation 

does not predict, because in classical mechanics it is based on the assumption that physical interactions 

propagate instantaneously, at infinite speed. They were experimentally measured directly for the first 

time on September 14, 2015 as part of the LIGO (Laser Interferometer Gravitational-wave Observatory) 

project.  

As the gravitational wave (at the speed of light) passes by the observer, space-time strains and distorts. 

The distance between objects rhythmically increases and decreases as the wave passes, and this effect 

fades with distance. This is a recognized explanation of this phenomenon.  

It is predicted that binary neutron stars as they merge, due to the very large acceleration of their 

masses, can be a powerful source of gravitational waves. Due to the astronomical distance from these 

sources, the effects measured on Earth become very small, with wrinkles less than 1 to ρπ, but they 

are measured with even more sensitive detectors (accuracy up to υ ρπ parts).  

                                                           
24

 Jules Henri Poincaré (1954-1912), French mathematician and theoretical physicist.  
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They make it possible to observe the merging of black holes and other exotic deep space objects 

inaccessible by traditional means, optical or radio telescopes. They could be useful to cosmologists for 

observing a very early universe, before recombination (an era when charged electrons and protons first 

became attached to electro-neutral hydrogen atoms) when space was opaque to electromagnetic 

radiation. Accurate measurements of gravitational waves also help in additional testing of the general 

theory of relativity.  

These are familiar things. But in our previous context, when gravitational waves move at the speed of 

light only in areas of άweak gravityέ (solar system), while in areas of άstrong gravityέ they move (slightly) 

more slowly, they resemble the reverse movement of sea waves traveling on the surface above great 

depths when reaching the shore. The lower part of the sea wave that enters the shallows starts to get 

stuck on the bottom and the wave slows down. Inwardly, it is reminiscent of the process of a 

gravitational wave which, leaving a strong field where it άgets stuck in timeέ, accelerates to the speed of 

light.  

I note that the usual άproofέ of speed of light of the gravitational waves I consider naive. That which says 

that the speed of these waves is equal to the speed of light, because in the event of the sudden 

disappearance of the Sun, the gravity of this star would still act as long as we see its light ς for 

information which travels at the speed of light. This would then also apply to the sudden disappearance 

of the sound source, because (alleged) information travels at the speed of sound! It is clear, I guess, why 

I consider this έmethod of provingά wrong.  

Instead, I repeat, the gravitational waves move at the speed of light where they cause the movements of 

celestial bodies along conical trajectories and vice versa, where those trajectories would not be conical 

their speed would not be the same. This opens up some very interesting possibilities, but which are no 

longer a matter of popular retelling (for now), so we'll talk about that another time when I check, 

understand and arrange the formulas.  
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6. Waves 
February 18, 2021 

Summary of sound, water and boson waves, with some new speculations about the influence of force 

field waves especially electromagnetic and gravitational.  

Sound 

Periodic compression and expansion of a substance in a certain direction defines a longitudinal sound 
wave. Its direction is from the source to the middle of the oscillation, as seen in the picture on the left.  

 

This vibration energy is 
normally transmitted 
through space at speed  

ὺ
 l
lὪ  

Where l and Ὕ are 
respectively the wave-
length and the period 
of local oscillations, di-
lutions and thickening 
(in the figure). The 
frequency Ὢ ρȾὝ is 
the reciprocal of the  

period. These local pressures are shown on the bottom line in the form of a sinusoid.  

From Hooke's25 law of elastic force (Ὂ Ὧὼ) and Newton's26 second law (Ὂ άὼ), and considering 

the acceleration ὼ ὨὼὨὸϳ  of mass ά, we obtain the differential equation  

ά Ὧὼ π,                                                                       (1) 

movements of the abscissa ὼ during time ὸ. The solution of this equation (1) is a sinusoid  

ὼὸ ὃÓÉÎ‫ὸ,                                                                       (2) 

where ὃ is the amplitude (of the oscillations) and ‫ ὪȾς“ so-called circular frequency.  

The circular frequency defines the number of dilution and thickening cycles per unit time, and the 

amplitude of such waves is equal to the wavelength (ὃ l), so for the kinetic energy of oscillation of a 

particle of mass ά we can write  

Ὁ .                                                                  (3) 

                                                           
25

 Robert Hooke (1635-1703), English scientist.  
26

 Isaac Newton (1642-1727), English mathematician and physicist.  
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The sound source by compresses do work ὡ Ὂὼ Ὧὼ Ὧὃ , and this elastic state then 

turns into stretching and transfers energy (3) from which we get ‫ ὯȾά. The sound lasts as the 

source consumes energy while working and the transmitted energy of the oscillations is replenished.  

The amplitude of a sound wave determines what we perceive as loudness. Sound intensity, Ὅ, is the 

average speed of energy transfer per unit area perpendicular to the direction of wave propagation, so  

Ὅ  ,                                                                               (4) 

where ” is the density of air (kilogram per cubic meter), and ὺ is the speed of sound. Intensity is the 

amount of energy emitted by a sound source in one second through an area of one square meter 

perpendicular to the direction of propagation and is measured in watts per square meter.  

Due to the analogy with action, or information, we can write that the volume (intensity) felt by the 

human ear is proportional to ὒ ÌÏÇ, where in the numerator (numerus logarithm) is the intensity (4), 

and the denominator is the audibility threshold. The volume increases with the density ” of the medium 

by which the sound is transmitted and with the amplitude ὃ. However, in spreading in all directions, 

spherically, the density of sound energy decreases with the square of the radius, distance from the 

source, and thus the volume decreases.  

Water wave  

Waves propagate through the surface of water due to its tension, gravity and the forces of restoration  
(which pull the body into equilibrium). In the 
picture on the right, there is a surface disturbance 
that spreads in concentric circles, oscillating 
transversely (perpendicularly) to the wave 
directions with noticeably smaller amplitudes and 
slightly changed wavelengths. 
 
Again, the angular frequency is ‫ ς“ȾὝ, where 
Ὕ is the period of oscillation, the wave number 
Ὧ ς“Ⱦl, where l is the wavelength, so putting   

q Ὧὼ ‫ὸ, means the angle in radians, where ὼ is the path of the wave during ὸ, we have  

h ὃÓÉÎ—,                                                                           (5) 

a sinusoid representing wave propagation. The amplitude ὃ is now perpendicular to the wave 

propagation direction, and the (phase) wave velocity is ὺ .‫ȾὯ  
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You can find further performances of the properties of water waves in various places27, and here I will 

just retell some results. One way or another28, for the square of the velocity ὺ of waves on waters of 

various depths Ὤ and gravitational acceleration Ὣ ωȢψ m/s2, we usually find approximately  

ὺ
l
ÔÁÎÈ

l
 .                                                                (6) 

The following expressions apply to the hyperbolic tangent29:  

ÔÁÎÈὼ ὼ Ễ,   for ȿὼȿ ,                                    (7) 

 

and the graph of that function is in the picture on 
the left. As can be seen, the hyperbolic tangent is 
an increasing function, from -1 to +1, so it stands 
as the fraction coefficient in formula (6) where it 
achieves a reduction of the first factor, the main 
expression of velocity. 

In waters of great depth in relation to the wavelength l, for the square of the wave velocity can be 

obtained and  

ὺ
l

l
,                                                                        (8) 

where ‎ is the surface tension and ” is the density of water. These differences of (approximate) 

expressions for wave velocity arise due to different influences that we can ignore and the mechanics of 

water waves at different depths. In both of the following images, the flow of the wave is from left to 

right and both show the circulation of water particles. On the left is a wave in deep waters and on the 

right in shallow ones where the destruction of that circulation can be seen.  

 

                                                           
27

 Coastal Wiki, http://www.coastalwiki.org/wiki/Main_Page  
28

 Wawes in Water, http://web.mit.edu/1.138j/www/material/chap-4.pdf  
29

 The Serbian expression is also ÔÈὼ. 

http://www.coastalwiki.org/wiki/Main_Page
http://web.mit.edu/1.138j/www/material/chap-4.pdf
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Formula (8) is more interesting to us in the following three cases: the speed of the waves: when it comes 

to the ripple of water in the shallows, when we have long waves in deep water and when long waves 

reach the shore. Then additional approximations are useful.  

The first is the case of small water waves whose speed depends on the wavelength l and is dominated 

by surface tension forces that move these waves along. There are also gravitational forces on these 

small humps of water, but they are negligible. For such, the speed is approximate  

ὺ
l

.                                                                              (9) 

Thus, in ripples, water of shorter wavelengths, the second collection (8) dominates.  

In the second case, for long waves in deep water, the first term (8) is more important and the speed is 

approximately  

ὺ
l
 .                                                                               (10) 

In deep water the surface tension ‎ is too small to be important. The density ” is also irrelevant, 

because when it increases ς the force acting and the mass moving the wave grow together, without 

affecting the response time of the water in front of the wave front.  

In shallows, when the wavelength is much greater than the depth of the water, and this much greater 

than the amplitude (lḻὬḻὃ), the speed of the wave is approximately  

ὺ ὫὬ.                                                                            (11) 

Bores30 are a special case of shallow water waves. The bore can be easily made in a long narrow trough 

of water by sweeping the water at a steady speed using a wide paddle.  

The energy of water waves is provided by the kinetic energy of the wind, mostly. According to (6), with 

higher energy input, higher velocities and higher wavelengths occur, and further, higher wave velocity is 

affected by higher depth, because the kinetic energy  

Ὁ
l
ÔÁÎÈ

l
,                                                           (12) 

where ά is the mass of water in the wave.  

Waves of higher energy will push those with less energy, on average, so it can happen that sea currents 

go with their own ways, and that surface waves go from greater depths to smaller ones, slowing down. 

This is especially true where the depth Ὤ is not too great (see the graph of the hyperbolic tangent) and 

the water suddenly becomes shallower.  

                                                           
30

 Tricker, R. A. R. (1964), Bores, Breakers, Waves and Wakes or Barber, N. F. & Whey, G. (1969), Water Waves.  
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Wave refraction  

It is a general phenomenon that waves turn from environments of higher speeds to environments in 

which they move more slowly. In the case of water, we understood that waves of higher energy push 

those with less energy31 and that from greater depths they tend to smaller ones, so we can expect them 

to turn towards environments where their speed would be lower. 

In a more general case, we could refer to the well-known άleast action principleέ and confirm the above 

άenergy reasonέ along the way. Physical action is a product of energy and time, so situations of equal 

time will spontaneously lead to the unfolding of lower energies and, when it comes to kinetic energy ς 

to lower speeds.  

However, the classical ways of determining the refraction of waves at the boundary of the midpoints of 

their different velocities, ὺ and ὺ, are mainly reduced to geometric and common analytical methods of 

proving Snell's law:  

ὺḊ ὺ ÓÉÎ‌Ḋ ÓÉÎ‍ .                                                          (13) 

The angles ‌ and ‍ are the inclination of the directions of wave motion towards the normal to the 

boundary of the midpoints before and after the deflection. I have dealt with similar proves32 and I will 

demonstrate something similar here.  

In the figure on the right, the assumed wave 
velocities are ὺ ὺ, so from (13) follows 
ÓÉÎ‌ ÓÉÎ‍, and hence ‌ ‍. So says Snell's 
law, which we shall now prove. 
 
In the case of light, when, as in the given picture, 
ὺ ὺ, where in the lower medium, which we 
call άoptically denserέ, its movement is slower.   

 
From the upper medium, from the direction ὅὄᴆ with the speed ὺ the wave reaches the boundary line 

ὃὄ and continues the movement in the lower medium with the direction ὃὈᴆ with the speed ὺ. The 

normal on the horizontal boundary are two dashed vertical (mutually parallel) lines, with which the 

directions of motion, ὅὄᴆ and ὃὈᴆ, form angles ‌ and ‍ respectively.  

Long parallel lines, such as ὃὅ or ὄὈ, represent wave fronts, with spacing between parallels 

corresponding to wavelengths. As the figure shows, the refraction of a wave from a larger to a shorter 

wavelength and the same frequency, according to the formula ὺ lὪ the wave passes into the medium 

where it has a lower speed.  

                                                           
31

 unofficial interpretation  
32

 ˾ Φ ˤ͍͙ͯͦ͟ΐΥ ˽͔͔ͪ͊ͣ͊ͥ͡ ͭ͊͊ͫ͊͡ όнлΦ ƧŀƴǳŀǊ нлмтύΣ https://www.academia.edu/31013581/  

https://www.academia.edu/31013581/
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The acute angle at the vertex ὃ of the right triangle ὃὄὅ is also ‌, and the acute angle at the vertex ὄ of 

the right triangle ὄὃὈ is ‍ ς because the angles with mutually perpendicular arms are equal (or are 

supplementary, which is obviously not the case here). However, the same wave sweeps the same path 

ὃὄ both as the upper and as the lower, at the same time ὸ, where when the upper crosses the path ὅὄ 

with speed ὺ then the lower crosses ὃὈ with speed ὺ. From:  

ὅὄ ὃὄϽÓÉÎ‌,    ὃὈ ὃὄϽÓÉÎ‍,  

ὅὄḊ ὃὈ ÓÉÎ‌Ḋ ÓÉÎ‍,  

ὺὸḊ ὺὸ ÓÉÎ‌Ḋ ÓÉÎ‍,  

and after reduction the time ὸ we get the Snell's law (13).  

That Snell's law can be obtained on the basis of the principle of least time consumption, the wave that 

passes from the upper to the lower medium, which you can see in the same my article. This evidence 

should be distinguished from, only mentioned here, by the principle of least action, but it should also be 

distinguished from the άenergy reasonέ with which this subtitle was started.  

Boson waves  

Unlike fermions (e.g. electrons, protons, neutrons, muons), bosons (e.g. photons, gluons, W and Z, 

gravitons) have an integer spin. The Pauli principle33 does not apply to them either, which says that two 

identical fermions cannot be found simultaneously in the same quantum state. Bosons are therefore not 

pushed as sound-transmitting molecules and are generally pickier in interactions.  

Like light, bosons interfere but do not communicate directly. By interference, bosons can increase 

visibility (observability), but they do not suppress each other or directly exchange energy in the way of a 

wave of a substance.  

For example, the electric field of an electron induces a magnetic and vice versa by defining concentric 

spheres around the electron and vibration which we call virtual photons. As the radius of the sphere 

increases, its amplitude and the probability of the action of the corresponding virtual photon on a 

possible second charge decreases when the wavelength and momentum remain unchanged.  

If the spin of a given electron is , the spin of a virtual photon is ρ, and the spin of another electron 

is , then an interaction can occur, which causes changes in spins, momentums and energies. By 

exchanging, the virtual photon becomes real, and the given second electron also receives a spin of  

and , respectively. They bounce due to the transmission of momentums, like two boats on the water 

when we throw a bag of sand from one to the other. The spherical shape of virtual photons corresponds 

better to Coulomb's law than the linear of the Feynman diagrams.  

                                                           
33

 [2], 3.11 Pauli Principle  
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In the following, a given electron, now spin , can emit as real only photons of spin ρ that could 

react only with the electron spin , changing its spin to , and the spin of the given electron to . 

This returns the spin situation to the previous one, with additional electron repulsion with each new 

momentum exchange. It is vaguely whether all virtual photons of one electron have the same spin, the 

same wavelength and momentum, or whether their emissions are also random with all the more limited 

possibilities of interaction.  

The reverse course of time of some particles was seriously considered by some founders of quantum 

mechanics, such as Dirac with positron (1928), and this idea is still considered open by many. What we 

can add, according to information theory, is that we are in a 6D universe of parallel realities. The 

possibilities are a continuum of many, but their realizations cannot be more than countless infinitely 

many. Following this strange plot, the idea of time inversion becomes even stranger.  

I remind you that due to the assumption of the universality of information, and uncertainty as its 

essence, the universe of possibilities is not a static warehouse of 6D events through which we randomly 

travel in the 4D world of reality. That this άjourneyέ has additional profound unpredictability is dictated 

to us, among other things, by Bell's theorem34 (1964) according to which the very idea of causality 

believers about the "hidden parameters" of quantum mechanics is contradictory, even if such 

άinsufficiently causalέ causes were not approachable to us in any case.  

In so many coincidences35, the old idea of the reverse flow of time is less vulnerable than usual. The 

particles of the opposite flow of time that we see exist in countless realities around and wherever we go 

we come across their realizations. In other words, the positron of our world is part of an uninterrupted 

series of positrons that we encounter in whatever future we turn to.  

Additionally, the probability of randomly selecting the same particle from a continuum twice is zero. 

Moreover, there is a zero probability that we will re-select the same particle from countless infinitely 

many attempts ς from the continuum of possibilities. So many times the continuum is greater than 

countable infinity that even άreturningέ to a given event of the past would be an incredible event. On 

the other hand, if something is already being chosen, it must be chosen.  

The basis of this story is in set theory. Countably infinite sets are natural, integer and rational numbers. 

The set of real numbers is innumerably infinite ς the continuum infinite. The chance of randomly 

extracting the previously mentioned rational number from the continuum of real numbers is zero, and 

the probability of hitting it at least once in (countable) infinitely many repeated attempts is zero. But 

with each attempt we will draw some number.  

 Positrons, like other elementary particles, are just so dumb (impersonal) that we don't even notice their 

differences from some future there, or parallel realities. That is why this idea (of opposite currents of 

time) is as resistant to criticism as it is fantastic.  

                                                           
34

 [2], 2.23 EPR Paradox  
35

 [2], 2.15 Dimensions of Time 
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Therefore, thinking consistently further, for example about the electromagnetic field and its photons, in 

the supposed way we engage in speculations about the future and the past. The two electrons have the 

same flow of time and the photons that mediate their communication define their comparative present. 

On the contrary, an electron with an elementary particle of opposite charge (positron) has the opposite 

course of time and the previous reason for the repulsion of two electrons becomes the explanation for 

the attraction of the electron and positron.  

A different speculation36 will lead us to similar results. Let's say it's based on the assumption that the 

speed of light becomes just as smaller as the universe gets bigger. Due to the limited speed of light, 

electrons are always seen with a time delay; looking at each other's past the older they get farther, so 

trying to get more away they actually turn into an optically denser medium. For now, I cannot say for 

sure that such an idea will not become part of a broader theory with the previous one, as I do not single 

it out in a separate story. Also, I do not want to pay more attention to it for now.  

The next and last of today's speculations about boson waves is just as strange as the previous two and, 

at least at first glance, just as independent of them. It is especially interesting in the case of graviton37, 

which should have a spin of ς and such be completely unusable for interactions with, say, electrons (or 

any fermions of the spin ). By merging such, none of them would be formed, because the resulting 

particle would have to have a spin of 1.5 or 2.5 due to the law of conservation of spin, which makes 

gravity a macro phenomenon.  

A well-known lesson of the theory of relativity is that mass defines the geometry of space and vice versa. 

The fact that gravity is a universal phenomenon (in the macro world) only obscures one fact that we are 

now discovering, that each individual field of gauge bosons (those that define a field of forces) could be 

attributed a special metric that would apply to its charge-reactive particles.  

The άspace-timeέ metric of the electromagnetic field that make the Coulomb force would be such that 

the geodesics of the electric charge would be trajectories corresponding to the movements due to that 

force, and in the case of a combination of different forces we would calculate the resultants.  

This idea is based on the well-known views of higher algebra and functional analysis. Hence, we know 

that on the (same) vector space, different normed can be defined, and on these, different appropriate 

metrics can be obtained, and then the different metric spaces can be obtained too, as well as vice versa. 

Such an addition to the theory of forces would explain reality to us at least as much as it would initially 

complicate the previously known calculations of motion. But it would not contradict correct theories 

because neither algebra nor analysis does it.  

Finally, we notice that the second of the speculations mentioned here also applies (perhaps) to gravity. 

Namely, if the speed of gravitational waves in a strong gravitational field is at least a little lower than in 

                                                           
36

 Big Bang, https://www.academia.edu/45088060/Big_Bang  
37

 [2], 3.27 Graviton  

https://www.academia.edu/45088060/Big_Bang
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a weaker one38, then the masses could be άdeceivedέ and turned towards the άoptically denserέ 

medium, because they are waves themselves, and gravity is a universal macro phenomenon.  
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 as discussed in [1] or Dwarf Galaxies, https://www.academia.edu/45118779/Dwarf_Galaxies  

https://www.academia.edu/45118779/Dwarf_Galaxies
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7. Size of Cosmos 
February 25, 2021 

On modern cosmology and from the point of view of future information theory.  

Introduction  

The cosmos is an unlimited39 space around us. The second name is universe. It is considered to be built 

from space, time and matter, perhaps from ideas such as mathematics [11], or from information whose 

essence is uncertainty [1].  

With the naked eye we can see about 5,000 stars, glowing celestial bodies similar to the Sun. The 

distances between the stars are huge and are measured in light years (ly), roads approximately 9.6 

billion kilometers long that light travels in a year at a speed of ὧ σππ thousand kilometers per second. 

By the way, the astronomical unit (au) is the average distance of the Earth from the Sun (about 149,600 

thousand km). Parsec (1 pc, about 206 thousand au) is the distance from which one au is seen at an 

angle of one arc second, and mega parsec (Mpc) is one million parsecs.  

We see 88 constellations in the sky (Big and Little Bear, Scorpio, Sagittarius and others), but we group 

the stars more naturally into clusters (constellations) which are parts of galaxies, and these again form 

their clusters.  

The sun is on the edge of one of the spirals of our Galaxy called the Milky Way. We are about 26 

thousand light-years from the center of the Milky Way whose diameter is estimated at 100 to 180 

thousand ly with 100 to 400 billion stars and at least as many planets. The matter of the Galaxy in its 

wider scope orbits at a speed of about 220 km/s with a uniformity that is not in accordance with 

Kepler's40 laws. With stars around us that are close to 13.8 billion years old, as much as the universe 

itself, we are moving at a speed of 600 km/s in relation to extragalactic references.  

In 1916, Einstein41 predicted the expansion of the universe with the general theory of relativity, than in 

1924 Hubble42 noticed that there were galaxies other than ours, and with Lemaître43 (1929) he 

participated in observing and defining the expansion of the universe, what is called άHubble's lawέ44  

ὺ Ὄὶ.                                                                                (1) 

This ὺ is the average speed of galaxies moving away from us expressed in km/s, ὶ is the distance from us 

in kilometers, and Ὄ φχȢτ km/s/Mpc (kilometers per second per mega parsec) is the Hubble constant 

derived from recent measurements45 of cosmic microwave radiation. When the Hubble constant is 
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 Zeilik & Gregory 1998  
40

 Johannes Kepler (1571-1630), German astronomer and mathematician.  
41

 Albert Einstein (1879-1955), German-born theoretical physicist.  
42

 Edwin Hubble (1889-1953), American astronomer.  
43

 Georges Lemaître (1894-1966), Belgian Catholic priest, mathematician and astronomer.  
44

 https://en.wikipedia.org/wiki/Hubble's_law  
45

 https://www.space.com/hubble-constant-measurement-universe-expansion-mystery.html  

https://en.wikipedia.org/wiki/Hubble's_law
https://www.space.com/hubble-constant-measurement-universe-expansion-mystery.html
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estimated based on the redshift, slightly larger numbers are obtained46, shown in the following graph. 

These differences confuse modern cosmology.  

 

In 1933, Zwicky47 was the first to discover άdark matterέ, noting that the stars themselves did not 

provide enough attractive gravitational forces for the rigid rotation of galaxies. The differences between 

theory and observation that were then observed in other galaxies were supplemented by dust and 

generally known dark celestial bodies that we do not see with telescopes. But, with better technology 

and astronomy it was realized that this was insufficient.  

Distances  

Due to the limited speed of light, the two people talking across the table are never in exactly the same 

present. We look at the even older past of distant galaxies with a telescope. These perceived pseudo-

realities can be represented by some Ὓ the άsystem of perceivedέ όcommonly called άǇǊƻǇŜǊέύ 

coordinates, because fictions also belong to the world of information48.  

                                                           
46

 https://www.cfa.harvard.edu/~dfabricant/huchra/hubble/  
47

 Fritz Zwicky (1898-1974), Bulgarian-Swiss-American astronomer.  
48

 [2], 3.21 Fiction  

https://www.cfa.harvard.edu/~dfabricant/huchra/hubble/
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In addition, we believe that the times of distant celestial bodies that some astronomer observes run 

parallel to the present of him, and that all events, which he cannot see because they escaped into the 

future of others, belong to a different system Ὓ of άcomparative coordinatesέ όcommonly called 

άŎƻƳƻǾƛƴƎέύ. This additional system is also a pseudo-reality, inaccessible to direct perception.  

The third assumption we need is the άcosmological principleέ, also the official hypothesis, that an 

observer to whom the universe is isotropic49 and homogeneous50 can be imagined anywhere in the 

universe. We call them comoving όƘŜǊŜ ŀƭǎƻ άcomparativeέύ. In addition, cosmology defines a άcomoving 

coordinate systemέ (Ὓ) in which these observers rest. Cosmological time is added to each commoving 

observer. With this in mind, we define two types of distances51.  

The άǇŜǊŎŜƛǾŜŘέ or proper distance Ὑ  is the remoteness between two regions of space that a given 

astronomer observes. As the universe expands, the perceivable (proper) distance between two 

comoving observers grows over time, and what they see is the older past of the other. For official 

cosmology, this treatment is also52 theoretical, because we do not know the current (present), i.e. 

comparative or comoving state of the objects. Light needs time to travel from somewhere, during which 

the universe expanded, and based on observations, we calculate the appropriate comoving Ὑ.  

Comparative distance is the distance expressed by comoving coordinates. The comoving distance 

between the two regions of the universe remains constantly the same Ὑ  const, while the observed 

(proper) changes with time ὸ. Hence the equation  

Ὑ ὸ ὥὸὙ                                                                        (2) 

where the time function ὥὸ is the scale factor. At the time of the άBig Bangέ it was ὥ π, and it is 

assumed that in the current cosmological time ὥ ρ. In other words, at present both distances have 

the same value.  

The change in the observed (perceived, proper) distance over time is called the recession rate ὺ, for 

which we find:  

ὺὸ ὥὸὙ ὌὸὙ ὸ                                                           (3) 

where Ὄὸ ὥὸȾὥὸ is placed. It is Hubble's law (1), now less static.  

The following figure53 shows, on the lower line (comoving distance) the radius in giga light years (Gly) 

and on the upper line in giga parsecs (Gpc). Cosmological times are shown on the left vertical axis, and 

the corresponding scale factors on the right. Oblique lines at an angle of 45o represent the rays of light 

we observe. The vertical line in the middle is our world line (comoving observer in our place), and the 

                                                           
49

 Isotropy (Greek: ˋˇˌ άequalέΣ ˍˊˈˉˇˌΣ άpathέ) ς equality in all directions.  
50

 Homogeneity ς equality through volume, at all points.  
51

 https://en.wikipedia.org/wiki/Comoving_and_proper_distances  
52

 so she recognizes it as a pseudo-reality  
53

 https://arxiv.org/pdf/astro-ph/0310808.pdf  

https://en.wikipedia.org/wiki/Comoving_and_proper_distances
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horizontal (ƳŀǊƪŜŘ ǿƛǘƘ άnowέ) means the current cosmological time (13.8 billion years after the Big 

Bang). We are now at the intersection of those two.  

 

Dotted verticals are άcomoving regionsέ that should be drawn from the point of view of observed 

(proper) distances to expand, to disperse in relation to us (away from the middle vertical). Here they are 

shown from the point of view of άcomoving distancesέ and therefore they are all vertical. The rounded 

line that goes around our world line is the άHubble radiusέ, and the areas inside are recession velocities 

less than the speed of light ὧ, areas outside are speeds greater than ὧ.  

The upper line of the image shows that the observable universe is about ρτȢςφ giga parsecs, or the same 

at the lower τφȢυ in billions of light years, or τȟτπρπ meters, in all directions.  

Cooling  

More likely events are more frequent and less informative. The first is indisputable (I guess), and the 

second I believe can be understood without talking. In this, we notice the universal άsaving of 

uncertaintyέ of nature, which I call the άprinciple of informationέ. Then we see it in the aspiration of 

entropy for growth. The spontaneous transfer of heat from a higher body to a neighboring lower 

temperature body, known as the Second Law of Thermodynamics, is the effort of molecules to reduce 

the άamount of uncertaintyέ in their oscillations.  

By transferring the energy of oscillation of its molecules to the environment, the substance gains 

entropy, cools, and now we notice that it also loses information. This general frugality with options and 

unexpectedness is an effort for non-communication, or non-action, for sluggishness, and I call it the 

principle of information.  

It is also present in the pursuit of growth entropy! Namely, the spontaneous transfer of heat from a 

higher to a neighboring lower temperature body, known as the Second Law of Thermodynamics, is 
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actually directing the molecules towards reducing the άamount of uncertaintyέ in their oscillation. By 

transferring the energy of vibration of its own molecules to the environment, the substance entropy 

grows, substance cools down, and now we notice that it also loses information.  

The universe is cooling. It is already at only a few degrees Kelvin, so only a little above absolute zero ς 

when (so to speak) the movement stops. Modern physics holds that every movement stops at absolute 

zero (not exactly, but let's say they are close). In the so-called The Bose-Einstein condensate, which is 

considered to be the fifth state of matter, a very dilute gas at a temperature close to absolute zero, 

reduces the kinetic energy of the atom. Getting such is becoming a routine thing in better laboratories, 

and what is important here is that the light there can be significantly slowed down, that its speed can 

drop to below 20 meters per second! 

Well, the universe is expanding and its entropy is growing, but we can say the opposite is also true. 

Moreover, we can equate statements, consider them equivalent, that the universe is cooling, the speed 

of light (present) is declining, and that we are seeing the universe getting bigger! We can also say this: 

the entropy of a substance increases because the information of the substance decreases, and that is 

because the missing information (in equal amounts) goes into space. Also, because the information of 

space is higher (they are particles too) the space is getting bigger, the paths between galaxies are getting 

longer. Or, the universe is becoming rarer (substance).  

Epilogue  

This is a sequel to the Big Bang story54, and a further sequel should be perhaps the metrics of the 

cosmos. I say intentionally in the plural because it is already clear from the attached that there are more 

of them. For example, these include space-time comparative coordinates, observable, comparable from 

the point of view of a given astronomer. It is noticeable that modern cosmology looks more like science 

fiction than dry science, but that is exactly part of its charm. We shouldn't touch her hastily; we 

shouldn't remove its magic, at least until we are very sure of what we are talking about.  
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8. Metrics of Cosmos  
March 1, 2021  

The basic space-time metrics of the theory of relativity, Minkowski and Schwarzschild, are presented, 

with the intention that the text be an introduction to the sequels. Comments from the standpoint of 

(my) information theory have also been added.  

Introduction  

The figure on the left shows the Cartesian rectangular coordinate system (xyz) and in relation to it the  

 

Spherical (ὼ ὶ, ὼ —, ὼ •) with ties:  
ὼ ὶÓÉÎ—ÃÏÓ•, 
ώ ὶÓÉÎ—ÓÉÎ•, 
ᾀ ὶÃÏÓ—. 

The square of a linear element, Ὠὰ, is calculated 
according to (Pythagorean theorem) formulas:  

Ὠὰ Ὠὼ Ὠώ Ὠᾀ, 
Ὠὰ Ὠὶ ὶ Ὠ— ÓÉÎ—Ὠ• . 

The same result of this infinitesimal length (Ὠὰ) is 
obtained by using consistently any of the two 
given formulas. We introduce the fourth, ὼ Ὥὧὸ, 
time coordinate as the path that passes light at the 
speed of approximately ὧ σππ thousand kilo-
meters per second (km/s) during time ὸ multiplied 
by the imaginary unit (Ὥ ρ).  

The corresponding element of flat space-time thus becomes:  

Ὠί Ὠὰ ὧὨὸ                                                                   (1) 

and such was first used in the special theory of relativity. That is Minkowski's55 metric.  

For example, let Ὓᴂ be an inertial coordinate system moving uniformly rectilinear (at a constant) velocity 

ὺ along the abscissa (ὼᴂ and ὼ axes) with respect to the reference system Ὓ. The linear elements, Ὠίᴂ and 

Ὠί, are equal respectively to the observer's (which rests in Ὓᴂ) and to relative (which rests in Ὓ). Hence:  

Ὠίᴂ Ὠί, 

Ὠὰᴂ ὧὨὸ Ὠὰ ὧὨὸ.  

As proper one is in rest (Ὠὰ π), and the relative one is moving at speed ὺ ὨὰὨὸϳ , it will be further:  

ὧὨὸ Ὠὰ ὧὨὸ, 

Ὠὸᴂ Ὠὸ ὨὰȾὧ,  
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and from there  

Ὠὸ .                                                                            (2) 

This is a well-known formula of the special theory of relativity56 for the dilation of time. As long as Ὠὸ of 

its own (proper) time passes, Ὠὸ of relative time passes, and as ὨὸὨὸᴂ follows from (2) whenever 

ὺ π, the proper clock (of one's own) is late for the relative observer.  

It can be shown that the relative lengths in the direction of motion are shorter than their proper as 

many times as time slows down. Units of length perpendicular to the direction of motion do not change, 

so space-time remains άstraightέ, zero Gaussian curves57. Namely, the longitudinal line of motion is a 

circle of infinite radius (ὶO Њ) and its reciprocal value is zero (k ρὶϳ ᴼπ).  

Schwarzschild metric  

Solving Einstein's general equations for the central symmetric58 gravitational field, Schwarzschild (1915) 

found an expression for the distance 

Ὠί ὶ Ὠ— ÓÉÎ—Ὠ• ρ ὧὨὸ,                             (3) 

where ὶ ςὋὓȾὧ is so-called Schwarzschild radius, in the following figure59 on the right, with the 
universal gravitational constant Ὃ φȟφχτρπ  m3 kg-1 s-2 and the mass ὓ of the body gravirtatio- 
nally attracted.  
 
As can be seen from the given expre-ssion, 
if the observed object were at a distance 
of the Schwarzschild radius from the 
center of force, ὶ ὶ, in the denominator 
(first addition) it would be zero, so 
expression (3) would not make sense. 
Therefore, the distance ὶ ὶ is the radius 
of the sphere, called the άevent horizonέ, 
with the άblack holeέ inside. At that 
boundary, the event horizon, relative 
radial lengths and time disappear.  

 
In general60, suppose we have one remote observer in system Ὓᴂ with a flat metric (1) and one in system 

Ὓ within a gravitational field with a Schwarzschild metric (3), it will be:  
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Ὠίᴂ Ὠί, 

Ὠὰᴂ ὧὨὸᴂ ρ Ὠὶ ὶὨW ρ ὧὨὸ,  

where the substitution ὨW Ὠ— ÓÉÎ—Ὠ•  was introduced, otherwise common for shorter 

writing. When we assume that both observers are at rest, all lengths will be zero (Ὠὰ Ὠὶ ὨW π) 

and we get  

Ὠὸ  .                                                                             (4) 

The gravitational field slows down the passage of time. If the observer in the field (in system Ὓ) is circling 

around the center at the speed ὺ ὶὨW Ὠὸϳ , then an additional deceleration follows from the same 

equality  

Ὠὸ  .                                                                        (5) 

In contrast to the movement within the field, the movement of the remote observer (system Ὓᴂ) with 

the speed ὺ ὨὰᴂὨὸᴂϳ  and the rest of the internal (Ὠὶ ὨW π), gives  

ρ Ὠὸᴂ ρ Ὠὸ,                                                          (6) 

which means that any deceleration of time by a gravitational field has some equivalent in inertial 

rectilinear motion with a corresponding velocity ὺ ὧὶὶϳ outside the field.  

Here it is also possible to show that the gravitational field shortens the radial lengths (in direction to 

center of force) as many times as time (4) slows them down. The lengths perpendicular to the radials are 

the same and that is why we say that the space-time of the gravitational field is curved.  

Creating space  

Those random events that happen more often are more likely. It is a description of the frequency, 

nothing special, but the more probable the event, the less informative it is. When we know that 

something is going to happen and it is happening, then it is not some big news. This is the origin of 

nature's principled tendency towards less informative random events, its need not to emit information if 

it does not have to, and to avoid communication where it can.  

The idea of the development of the cosmos towards greater certainty requires that we see its 

beginnings in greater uncertainty, and also to ask the question why the overall information has not 
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disappeared for a long time ago. The answers to this question are the law of conservation61 and the 

(hypo) thesis that information is the basic elements of space, time and matter.  

Information is a growing function of the amount of uncertainty to which the law of conservation applies, 

and in the choice of measure there remains the freedom to associate information with entropy. The first 

decreases in principle, while the second increases spontaneously (we know from thermodynamics) and 

it is possible to tighten their connection62, but that does not matter for now. The more important issue 

is the paradox of the disappearance of information with the law of its conservation.  

Hartley (1928) defined information on equally probable random events as the logarithm of their number 

(Ὄ ÌÏÇὔ). It turns out that the state of uncertainty before realization and information after ς are 

equal, which is not new for the mathematical theory of information and communication. It is not a 

novelty that uncertainty is formally a type of information also, but it is new statement that the principle 

of minimalism gives priority to potential over active information.  

That not realizing the uncertainty will have at least a slightly higher probability than its realization, ie 

inaction over doing, leads us to understand the law of inertia using the mentioned principle of 

information, and in general to notice the equivalence of information and physical action63. This is a good 

basis for the following two important theses. Spontaneous growth of entropy refers to the substance, 

and the information that the substance loses goes to space-time. That is why space and time grow.  

Another way to draw conclusions about the growth of space would be to άaccumulate biographiesέ of 

elementary particles that travel through space, which άdo not growέ and their histories have nowhere 

else to go in the άinformation ǳƴƛǾŜǊǎŜέ. I wrote about it earlier64. The half-period of decay of some 

elementary particles, especially fermions into bosons, would again be the third story.  

Deep space  

What the astronomer views as a άdeep universeέ consists of layers of concentric spheres of older 

histories that have larger radii. The development of the universe, which is otherwise in line with 

information theory, makes the cosmos not symmetrical in time if it is already in space. It is a feature that 

makes the geometry of long distances different from the local, the SchwarzschildΩǎ.  

The distances from astronomer to the galaxies are considered isotropic (uniform in all directions) and 

ƭŜǘΩǎ ǎŀȅ ǘƘŀǘΩǎ ŀŎceptable. But the universe is expanding and distances are growing. The journey of an 

object through an imaginary circle, through places visible to the astronomer, in an effort of the traveler 

to maintain an equal distance to his observer, would end in a spiral similar to Archimedes. It defines the 

geometry of the observable (proper) universe as hyperbolic.  
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Namely, the circle that could the astronomer άǇŜǊŎŜƛǾƛƴƎέ around (imagined) would have a greater 

length, which means that the ratio of circumference  and diameter of such is greater than pi (“ σȟρτ) 

and that the geometry of the deep space we can look at ς has a negative Gaussian curve. In the next 

picture, in the third figure (ᾀ ὼ ώ), the άsaddle surfaceέ is shown. On such a surface, a drawn 

circle (geometric place of points equidistant from the center) would be twisted and stretched. The ratio 

of its length (circumference) and radius would also be greater than pi.  

All Lobachevsky geometries, which are called hyperbolic65, are like that. They have a negative Gaussian 

curve, because the radii of the circles inscribed in the mutually perpendicular planes of the saddle 

surface are finite and in opposite directions. In the middle figure of the image, regardless of the fact that 

the surface is wrapped in a roll (ώ ὼ), the space is Euclidean. The circle on it that would represent 

one of the axes (ordinate) has an infinite radius, which makes the Gaussian curve zero. That is why such 

a surface could always be unfolded into a plane, with circles whose periphery and radius ratio is pi.  

 

Finally, on the first figure (ᾀ ὼ ώ) is a spherical geometry66 which we also call Riemannian. The 

circle described on the sphere would be shorter than the Euclidean one and the ratio of its 

circumference and radius would be smaller than pi. Similarly would be with a circle drawn around a 

centrally symmetric gravitational field, the aforementioned Schwarzschild solution of Einstein's general 

equations. Radial units of length (directions through the center) are shortened and the amount of radius 

becomes larger, but the vertical lengths (circular around the center of the field) are the same, so the 

ratio of the perimeter and radius of the circle is less than pi. The Gaussian curvature of such geometries 

is a positive number.  

Epilogue  

Only now are the most interesting parts coming (and the most difficult calculations), but in order not to 

be too extensive, I cut the story. In the continuation, there should have been at least Friedmann and 
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Gödel's metrics, as two historically most important solutions of Einstein's general equations for the 

cosmos, and then comments from the standpoint of information theory. However, cosmology has 

developed in the meantime, and with the theory of information, new moments are emerging, so these 

classic publications require more attention. Once we discuss all their differences (if ever) then we could 

run through similar issues.  
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9. Metrics of Cosmos II  
March 6, 2021  

------------------------------------------------------------------------ 

Question: The universe is expanding, more and more galaxies are leaving us faster and faster, but are 

that why67 time flows slower than ours?  

Answer: I don't know for sure, I'm waiting to see some measurements and working on assumptions. If it 

were that in distant galaxies moving away from us time flows (approximately) as fast as ours and that 

their units of length are equal to ours, and that the theory of relativity also applies there, then if those 

galaxies are at rest in relation to us their time flowed faster than ours and the radial (in the directions 

from us) units of length would be greater. This difference would be such that it can be reversed with 

relativistic (special theories) time dilatations and length contractions.  

Question: On what basis do you draw such an unusual conclusion?   

Answer: It is a long story. First read ά1.2.8 Vertical Fallέ from the book άSpace-Timeέ[2] and notice that 

the same procedure can be applied to deep space.  

Then see άExample 1.2.12. Derive the Schwarzschild metric from (Einstein's) field equations, starting 

from  

Ὠί Ὡ ὧὨὸ Ὡ Ὠὶ ὶÓÉÎ—Ὠ• ὶὨ—,                                    (1) 

where ὃὶ and ὄὶ are unknown distance functions ὶέ, in the following. Notice how widely the initial 

conditions are set in the example, and that they still give the Schwarzschild metric in the end.  

From the point of view of the distant past of the universe, we leave endlessly, our present in relation to 

a very old one behaves as when we look from the outside at a body falling into a strong gravitational 

field, someone that would constantly sink to the horizon of a black hole and never, in our time, it would 

not reach the edge at which (in relation to us) time stands and radial lengths disappear, become zero.  

Conversely, from the standpoint of our present, the distant past of the cosmos is on the edges of the 

space visible to us and further, to which we could not travel because it would constantly flee from 

passengers at the speed of light. Even with an imaginary time machine, which would take our time 

backwards, it would never be possible to reach the beginning of the άbig bangέ, because the units of the 

length of one's own (proper) time machine would change so that the journey in it would last indefinitely, 

although for us the cosmos is only 13.8 billion years old. 

Question: What would an imaginary traveler find in the past of the cosmos?  

Answer: Space, time and matter consist of information, and their essence is the unexpected, that is, 

novelty and change. That is why the cosmos is expected to change. Going back to the past, there is less 
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and less space, the substance is denser and there are more black holes. Black holes are integrators of 

space and time, and on the other hand they are like anchors68 stationed in space-time as the world 

around them moves.  

Question: And what are the chances that άblack holesέ do not exist at all? 

Answer: Weak. They are predicted by Einstein's equations of general relativity, and those equations also 

are derived from the principle of least action69, from which all the equations of theoretical physics 

known today follow. A lot of άrepairsέ should be made to physics, which would hardly be possible, by 

possibly rejecting the idea of the black holes.  

Question: Have you heard of Gödel's model of the universe?  

Answer: Yes, it is one of the earliest derived from the theory of relativity [12]. Gödel searched for the 

symmetries of the cosmos of both space and time and found an interesting and instructive example of 

metrics [13] which, consistent with his assumptions, also allows travel to the past. However, the 

principle of information requires an asymmetry of time. It is more principled to develop towards less 

informative, that is, more probable events, which the DǀŘŜƭΩǎ ŀǇǇǊƻŀŎƘ Ŏŀƴ ƳŀƪŜ ƻƴƭȅ ƻƴŜ ŎǳǊƛƻǎƛǘȅΦ  

Question: Are you familiar with Friedmann's metrics?  

Answer: Yes. Mitra [14] in his άexerciseέ starts from the assumption of isotropic and homogeneous 

space and a general form of metrics, more general than (1), to which he applies Einstein's field 

equations in order to obtain this known metric. Otherwise, the very idea of Friedmann's metrics seems 

to be a strong competition to other proposals, at least now while we are still waiting for key 

observations.  

Simply put, these (Friedmann ς Lemaître ς Robertson ς Walker) metrics start from  

ὶὨW ὶÓÉÎ—Ὠ• ὶὨ—,                                                              (2) 

the part of the spatial expression  

Ὠὰ ὶὨW ,                                                                   (3) 

to obtain for Ὧ π a flat, Euclidean space, for Ὧ ρ a curved and closed spherical, and for Ὧ ρ a 

curved and open hyperbolic. These third cases are close to the above (1).  

Question: Space is diluted out, and is the information lost in the process?  

Answer: Yes, but there are two ways to save the law of conservation of information during the 

expansion of the universe. Both could be topical.  
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 The first is that in accordance with the principled minimalism of communication, i.e. interaction, only 

the information of the substance decreases and that such goes into space. It is consistent with the 

spontaneous growth of (generalized) entropy and the attitude (also of information theory) that more 

entropy of a given system means less information.  

The second is that άspace remembersέ and that its άmemoryέ can affect our present. The latter arises 

again from the information theory according to which space, time and matter consist of it, from 

information, including biographies of elementary particles that are formed while particles travel through 

space. As such do not grow, we do not notice that they become bigger and bigger during their journey, 

so we cannot say that they remember something and thus accumulate information within themselves, 

so the space and time grow on their way. Elementary particles leave space-time to their history.  

The second is harmonized with the first by the assumption that the present receives exactly as much 

information from the past as it loses due to the principle of minimalism of information, i.e. increase of 

entropy.  

Question: Did I understand you to say that time also remembers, or is it a slip?  

Answer: It is not a slip; you have noticed well, they both remember, the space and time, because they 

are symmetrical concepts in the broader view of the universe, as a 6-dimensional continuum.  

One time dimension would mean a άdeterministic universe,έ which (my) information theory does not 

assume. But if you add only one more dimension of time, it will be an insufficient compromise with the 

assumed άobjectivity of chanceέ and you will need another one.  

More precisely, for each spatial dimension (however many there are in perhaps some future theory such 

as "string theory") there is one temporal dimension. The symmetries between them are also valid, 

where ὼ Ὥὧὸ, where on the left side of the equation is the spatial length corresponding to the right of 

the product of the imaginary unit (Ὥ ρ), the speed of light (approximately ὧ σππ km/s) and time ὸ 

the light needed to pass the given length.  

Well, the time remembers and that's why cosmos have it more and more and it flows to us more slowly. 

We cannot see the slowdown of the άcreation of the presentέ directly (as well as many things around us 

are that we do not actually see directly), but we sense and calculate. Namely, if there is less and less 

information (of substance), there are less and less random events, and the speed of time is a measure of 

the amount of such events. I say all this from the standpoint of άinformation theoryέ, which is still not 

considered in official physics, moreover, which is an unknown (hypo) thesis there.  

Question: Is there a particular problem with άonly one dimension of timeέ, or is this assumption 

completely arbitrary?  

Answer: Yes, there is one difficult problem with such an assumption, and therefore with determinism 

itself. Some processes are not commutative. I have written this many times.  
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For example, give a turn signal and turn the car to the left, and turn and signal with a turn signal ς they 

do not have to lead to the same. In general, the order of execution is important for some operations, 

such as: άdouble the numberέ and άadd three to the numberέ. In the first composition it would be 

ςὼ σ, and in the second ὼ σς, so for ὼ υ the first gives 13, and the second 16. Quantum 

processes, the so-called quantum evolution, are the representations of the operators (abstract algebras) 

and not all are commutative. The noncommutative ones lead to the άuncertainty principleέ, a special 

case of which is the better known Heisenberg's relations of uncertainty.  

Due to the existence of noncommutativity, the theory that there is only one flow of time, that space-

time is only 4-dimensional, and that one could agree that άthere is no timeέ (which is seriously 

considered by some physicists), whole models of the modern physics (relativity theory and quantum 

mechanics) become questionable.  

The exclusive one-linearity of the flow of time leads us into contradiction with the existence of 

noncommutative time processes and seeks a revision not only of modern physics, but it also challenges 

the algebra in which noncommutative operators exist. That is why I once gave up on the idea of causal 

reality, among others, and just not to always fall into the same endless discussions with the followers of 

such, I say that I use the άhypothesisέ of coincidence.  
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10. Quantity of Options  
March 9, 2021  

Abbreviated easier answers to more frequent questions related to information theory. About logarithm, 

additivity to the άǉǳŀƴǘƛǘȅ of optionsέ, fragmentation of equal chances, and physical action associated 

with information.     

Logarithm  

The real exponential function ώ ὦ , bases ὦ π and ὦ ρ, will take only positive values ώ π; to it 

the inverse mapping is the logarithm ὼ ÌÏÇώ. Conversely, if the logarithmic function ώ ÌÏÇὼ, 

base ὦ π, ὦ ρ and numerus ὼ π is given, then its inverse is the exponential function ὼ ὦ . In 

short:  

ὦ ὼ,   ÌÏÇὦ ὼ.                                                            (1) 

The exponential and logarithmic functions of the same base are mutually inverse.  

Since ὦ ρ and ὦ ὦ, it follows from the above:  

ÌÏÇρ π,   ÌÏÇὦ ρ.                                                               (2) 

Also from (1), due to ὦ ὦὦ we find ÌÏÇὦ ό ὺ ÌÏÇὦ ÌÏÇὦ, i.e.  

ÌÏÇὼώ ÌÏÇὼ ÌÏÇώ.                                                        (3) 

The logarithm of a product is equal to the sum of the logarithms, if the logarithms are of the same bases 

and when all three are defined. The immediate consequence is  

ÌÏÇὼ ὲÌÏÇὼ.                                                                 (4) 

Similar to making (3), from ὦ ὦȡὦ follows ÌÏÇὦ ό ὺ ÌÏÇὦ ÌÏÇὦ, i.e.  

ÌÏÇ ÌÏÇὼ ÌÏÇώ.                                                           (5) 

The logarithm of the quotient is equal to the difference of the logarithms, if all three logarithms are 

defined and the same base.  

It can be seen that (4) does not only apply to natural numbers (ὲᶰᴓ), but also to all real numbers 

(ὲᶰᴙ). Prove of such a generalization is often found in the lessons of real functions and I omit it here. 

Next we find ÌÏÇὥ ÌÏÇὦ ÌÏÇὥϽÌÏÇὦ, and hence  

ÌÏÇὥ .                                                                         (6) 

It is a handy formula for transforming logarithmic bases.  
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I note that in texts where we use only one base, say Ὡ ςȢχρψςψȣ, there is no need to list it in every 

logarithm. Second, using Euler's formula  

Ὡ ÃÏÓ• ὭÓÉÎ•,                                                                  (7) 

where Ὥ ρ holds for the imaginary unit Ὥ, it is possible to define analogous (1) complex logarithms. 

Such are the periodic functions, such as the cosine and sine.  

Additivity  

Information arises from uncertainty. More options before realizing a random event will give more 

information after. Let ὒὼ be a, for now unknown, function that represents a άmeasure of uncertaintyέ, 

a special real amount of equally probable outcomes ὼɴ ᴓ. Basically, this function is positive: for any 

ὼ ρ it is ὒὼ π.  

Let's say that the mentioned positivity is the first feature of this measure of uncertainty. In particular, 

with only one outcome, ὼ ρ, there is no uncertainty and ὒρ π. Another equally obvious property 

of the function ὒὼ is that from ὼ ώ follows ὒὼ ὒώ, which means that it is increasing. The third 

feature is additivity (collectability) and its explanation is a bit more extensive.  

Let A and B be equally probable outcomes and let them imply a further choice of equal ά and ὲ 

different options (άȟὲ ɴ ᴓ). The realization of both outcomes, A and B, would contain many options, 

quantities ὒάὲ, while the quantity of individual realizations A or B would be ὒά  or ὒὲ. The 

additivity of the function ὒὼ arises from the expectation that the total uncertainty of the outcome will 

be equal to the sum of individual uncertainties.  

For example, A and B are throwing fair coins and dice. The coin itself has the options άtailsέ and άheadsέ, 

let's mark them with T and H, and the dice with six numbers from 1 to 6. Throwing both will 

simultaneously produce ςϽφ ρς results, equal elements of the set {T1,T2,...,T6,H1,H2,...,H6}. 

Consistent with conservation of uncertainty, it would be required to be ὒρς ὒς ὒφ.  

In general, for the function ὒὼ we have stated three requirements: I. that ὒὼ π for every ὼ ρ, so 

that it is positive; II. That from ὼ ώ follows ὒὼ ὒώ, that it is increasing; III. That it is additive  

ὒὼώ ὒὼ ὒώ,                                                           (8) 

for each ὼȟώɴ ᴙ when ὼȟώ ρ. Then ὒὼ is a logarithmic function (arbitrary bases). I borrow the 

proof from the book [15].  

For every ὼ ρ and every ὶ π there exists a natural number Ὧᶰᴓ such that ὼ ς ὼ . It is 

based on this and property II that  

ὒὼ ὒς ὒὼ , 

whence because of III  
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ὯϽὒὼ ὶϽὒς Ὧ ρϽὒὼ. 

As according to I it is possible to divide these inequalities by ὶϽὒὼ, we have  

. 

The function ÌÏÇὼ, given bases ὦ π and ὦ ρ, has properties I - III, so the above is valid for it, i.e.  

.  

Based on that is  

, 

for each ὶ π. Due to the arbitrariness ὶ the expression in parentheses is zero. So it is   

ὒὼ ϽÌÏÇὼ ὥϽÌÏÇὼ.                                                          (9) 

This proves that (8) is a logarithmic function.  

However, when the άŀmount of uncertaintyέ is considered in more detail or more broadly, an improved 

information function, such as ὒὼ, will not quite consistently meet the mentioned conditions I, II and III, 

which means that the logarithmic form alone is not sufficient to represent it.  

Shredding  

Extending the previous complexity of divisions, we can imagine that we have ὲ ρȟςȟσȟȣ equally 

probable choices such that each of them has ὲ, Ὧ ρȟςȟȣȟὲ, mutually equal extensions, and that each 

Ὧ-th the continuation can have the following ὲ , Ὦ ρȟςȟȣȟὯ, mutually equal options, and so on. Then 

the questions arise, how can we explain these fragments with the help of the mentioned measure of 

uncertainty, and how far can we get with them?  

The information is a special άǉǳŀƴǘƛǘȅ of optionsέ. The logarithmic formula (9) served well for its first 

approximation, and we further explain it by binary search. The number of binary questions, answered 

άyesέ or άnoέ, required to discover the option, also defines the same (above) information. Namely, we 

divide the group with ὓ ς equal possibilities into two sets with ς  elements each and choose the 

one in which the choice is requested. After ὲ steps of division and dialing, working with smaller and 

smaller groups, a hidden option emerges. The number of steps ὲ ÌÏÇὓ is declared information, then 

binary in bits.  

For example, let the number ά7έ be an unknown imaginary, among the first ὓ ψ natural numbers. Let 

us divide the group of possible (eight) numbers into two parts, the first set {1,2,3,4} and the set of others 

{5,6,7,8}. Let's ask the question άLs the requested number in the first set?έ. According the answer άnoέ 
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we divide the second, again into two parts, the first {5,6} and the second part {7,8}. We ask the same 

ǉǳŜǎǘƛƻƴ άLs the requested number in the first group?έ, to which the answer is again άnoέ. We divide the 

new second group into two parts, the first set {7} and the second {8}. The answer to the same question 

is now άyesέ. As there are no more divisions, the required number is ά7έ, and the number of divisions is 

ὲ σ. The number of possibilities is ὓ ψ, and the information they carry is σ ÌÏÇψ.  

In order for the information (ὲ ÌÏÇὓ) not to diverge, it is necessary that the number of possibilities 

(ὓ) of the given situation be limited. In that sense, our communications (interactions) are finite, with 

the smallest (quantities) of free information. These smallest packets of information travel along with the 

physical action, which is also atomized (quantized).  

Action  

The fact that information is άheldέ together with physical action makes it a physical phenomenon. The 

quantum of action is the Planck constant (Ὤ φȟφςφρπ  m2kg/s) which appears in the expression 

for the energy Ὁ ὬὪ of the electromagnetic radiation particle (photon), where Ὢ ρȾ† is the 

frequency of the wave, and † is the time of one period. Hence, the elemental action is Ὤ Ὁ†, a product 

of energy and duration. 

In short, information is the equivalent of what70 we can consider a άsurfaceέ, a generalized product of 

energy and time. The fact that communication is formally equal to the exchange of interactions makes 

information in free form (physical particle) an accomplice of any energy change. This, among other 

things, means that there are carriers of gravitational force ς gravitons, as we know that there are 

carriers of electromagnetic force ς photons.  

In addition, the path of a particle from point ὃ to ὄ moving under the action of some constant central 

force ὕ is equivalent to the area swept by its radius vector, from position ὕὃᴆ to position ὕὄᴆ, for a given 

time. The established connection between objects ὃ, ὄ and ὕ is communication. During that time, an 

energetic interaction takes place, due to which we say that body ὃ, or ὄ, moves under the action of 

force ὕ.  

 

  

In the three images above, from left to right, the (curved) line ὰ moves the particle (body) from point ὃ 

to point ὄ so that at equal times the area of the (curvilinear) triangle ὃὄὕ is constant:  

                                                           
70

 [1], 3. Potential Information  
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1. The line ὰ is straight and the force from ὕ is zero.  

2. The line is a hyperbola, and the force is repulsive.  

3. The ine is an ellipse and the force is attractive.  

If the trajectory is a conic (line, circle, ellipse, hyperbola, parabola), then from a given point ὕ the charge 

is driven by a force that decreases with the square of the distance and its force carriers (gauge bosons) 

move at the speed of light. Conversely, if the path ὰ is not conical then the force does not decrease with 

the square of the distance and its carriers do not travel at the speed of light. I discussed this in [1].  

The constancy of the ὃὄὕ surface (area) in the images comes from the influence of force. It is clear that 

a change of force would change this area, so now we know that it then changes the action, the 

information, and consistently the probability. In other words, instead of saying that such charges (ὃȟὄ) 

move under the action of the corresponding force (ὕ), we can say that they travel in their trajectories (ὰ) 

because such movements are most probable from the point of view of the charges.  

The impossibility of changing the probability, information and action without changing the force 

indicates to the conservation laws of the mentioned phenomena, and the observation that in the 

absence of force we have a rectilinear motion (the first of three images) ς about inertia and minimalism 

of each of these quantities. On the other hand, we see the principled minimalism of information in the 

maximalism of probability, in the fact that more probable phenomena are more frequent and less 

informative.  

A special issue is particles that do not move at the speed of light. They have their own (proper) time and 

hence the mass of rest, i.e. additional inertia ς again due to the principled minimalism of 

communication. However, that is a special topic.  
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11. Quantity of Options  II  
March 11, 2021  

Excerpts from conversations about compliance with language, free networks, event direction, and 

everything related to information perception.  

Language  

I explain the scalar product of vectors using probabilities and one type of language statistics.  

Question: Can you explain to me the άinformation of perceptionέ on a specific example?  

Answer: Yes, let's take English and say computer data processing. Let's form a list of ὲ σπππ the most 

frequently used words in a wide sample of written texts, movies, speeches. Each word has a certain 

frequency, the probability of appearing in a given sample, the Ὧ-th word (Ὧ ρȟςȟȣȟὲ) has the 

probability ὴᶰ πȟρ. We can arrange the words in descending order, so that they more often have a 

smaller index Ὧ, but the sum of all ὴ is one. Thus, we defined the sequence, ie the probability 

distribution vector  Ἔ ὴȟὴȟȣȟὴ .  

Then let's take an individual who speaks English and do the same with his knowledge and use of English, 

his vocabulary as a sample. We get the vector Ἕ ήȟήȟȣȟή . Information perception is then the 

so-called scalar (inner) product of these vectors  

Ὓ ἜϽἝ ὴή ὴή Ễ ὴή.                                             (1) 

Some of the well-known preferences of people who speak languages are further shown to be the result 

of mathematical premises about vectors.  

For example, one premise71 says that the scalar product of the vectors is not greater than the product of 

the intensities of the vectors. That product can therefore (formally) be treated as probability (which is a 

number between zero and one), and then apply the άprobability principleέ (I invented the name), that 

more probable events are more common. Then comes the conclusion that άƎŜƴŜǊŀƭέ and άpersonŀƭέ 

language will strive to increase that result, the scalar product, that is, άinformation of perceptionέ.  

As the (scalar) product is, the higher the άalignmentέ of the vector components, ie coefficients of the 

sequence, and the largest is when both are arranged in the same order (descending or ascending), it will 

adapt to the άlanguageέ the άpersonέ, if the former ŎŀƴΩǘ ōŜ sufficiently adapted to the latter.  

Note that the same can be applied (calculated) to the behavior of an individual in relation to the 

behavior of a group. This creates a άspontaneous synchronicityέ, otherwise a long before noticed but 

still insufficiently understood phenomenon of individual adaptation. However, the theory of information 

perception is much more universal. Its formal model works well in various examples of social and natural 

sciences, and especially in quantum mechanics (which is full of intuitively difficult to digest results).  

                                                           
71

 [16], Lemma 1.2.49 (CauchyςSchwarz inequality), p. 132  
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Free networks  

Nodes with equally probable connections create large networks72 whose degree probability distribution 

follows a power law, at least asymptotically. They are characteristic for internet connections, electronic 

lines of larger regions, acquaintances among people in general, and even free markets. Such 

spontaneously grow into a relatively small number of positions (concentrators) with many connections 

and the rest of them many with few connections. We call them scale-free networks.  

Question: Why are there few on the free market who are much richer than others, they say you know?  

Answer: Yes, I am not alone, it is known. It is a spontaneous process of creating the so-called free 

networks. When the connections of the network (read flows of money and goods) are equal, then the 

few nodes (exchange centers) become the owners of more and more lines. Nodes with more of them 

thus get even more, and the poor ones remain short-sleeved.  

The well-known explanation goes by probability. When you add a new link, and they are all equally 

credible, it is more likely that it will belong to a node that has more of them. I forwarded him an 

additional attachment with details (irrelevant here).  

Q: Okay, I flipped through, that's something clear with probability, but they said you know a different 

explanation, supposedly with some new theory. Is it true?  

A: Maybe it could be άinformation theoryέ, but it is still my private matter. I believe I know several ways 

and here is one, in short, using άinformation perceptionέ.  

Consider (1) when the number of additions (ὲ) is large. Let it be the norm again (ὴ ὼ)  

ᴁὀᴁ ὼ ὼ Ễ ὼ ρ                                                          (2) 

and for the vector ὁ (that is Ἕ) the similar, and let all these probabilities be uniform, constant. Then, 

when approximately ὴ ή ρὲϳ , the sum Ὓ is smaller as the number ὲ is larger. Namely, from  

Ὓ Ễ ᴼπ,   ὲᴼЊ,                                     (3) 

it follows that the probability of the scalar product Ὓ decreases with increasing number of additions. If 

the first probabilities (components of vector Ἔ) represent the existing state of the network, and the 

second (vector Ἕ) new members, then the network will άavoidέ growth that leads to uniformities (3).  

A small number of high probability aggregates and a large number of low probability aggregates will be 

formed spontaneously ς to increase product Ὓ ς which then becomes a well-known statement about the 

growth of these networks into a small number of nodes with many connections and a large number of 

nodes with few connections.  
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That the scalar product (1) will indeed increase each time its two equal sums, Ὓ ὼ ὼ ύ, are 

replaced by two unequal sums, Ὓ ὼ ὥ ὼ ὥ ύ, where the remainder of the sum ύ 

remains the same in both, we see from the following:  

Ὓ ὼ ὥ ὼ ὥ ώ ςὼ ςὥ ύ ςὼ ύ Ὓ.            (4) 

For example, πȢφ πȢτ πȢυ πȢυ, or πȢυ πȢσ πȢς πȢσσ πȢσσ πȢσσ, which is easy 

to check. Additionally, we note that the difference Ὓ Ὓ ςὥ crescent with increasing sum of 

inequalities, which means that the spontaneity of this growth continues.  

When it comes to free networks, unfettered association, the united system will try to be formed so that 

there is no equality of nodes, and inequality will strive for further development. By interpretation, we 

will understand that there are few very άrichέ versus many άpoorέ and that there is a natural tendency 

of the άfree marketέ to further increase the differences between them.  

Routing  

Information theory starts from the assumed coincidence. However, although it is not deterministic in 

the true sense, the theory I advocate predicts the development of the cosmos towards greater causality 

ς whether we start from the existence of random events in rare situations, or deny the ultimate, strict 

certainty in any case. This is a consequence of the άprobability principleέ according to which more 

probable outcomes are sought.  

In that sense, determinism (causality) can be considered a consequence of chance. The opposite is 

difficult, except, for example, when the basis of άcoincidenceέ is the limitation of our perceptions to 

infinite causes. However, this reverse case is also a topic of information theory.  

Question: What is better for development, clutter or organization?  

Answer: It's like asking me what's better for water (H2O) oxygen or hydrogen, and the answer would be 

the same, it doesn't work without both. I will explain this from the point of view of άinformation of 

perceptionέ in its basic expression similar to (1).  

We consider intelligence Ὅ ὛȾὌ as the ability of an individual that is proportional to its ability to 

choose Ὓ and inversely proportional to the surrounding constraints Ὄ. Hence Ὓ ὍὌ, and the value is 

related to a special situation, a special problem that the subject faces and solves .  

If we assume that an individual perceives ὲᶰᴓ different situations that he can see as a problem and 

solve them, then we have so many (Ὧ ρȟςȟȣȟὲ) of his special abilities Ὓ ὍὌ . Their sum  

Ὓ Ὓ Ὓ Ễ Ὓ                                                                  (5) 

is the total information of a given person's perception.  
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On the other hand, due to the law of conservation73, it makes sense to define the intensity, the overall 

measure of both intelligence and the hierarchy involved in perception information (5). It does not have 

to be a simple sum, neither the άintelligenceέ Ὅ nor the άhierarchyέ Ὄ , nor the άPythagorean theoremέ 

(the root of the sum of squares), but anything from the rich treasury of mathematical theory of 

measure.  

Intelligence is a more adaptable size; it is more plastic than hierarchy in most cases, so it is the person 

who adapts to be more successful, and less often the other way around. In order to keep the amount of 

intelligence in question more or less unchanged, it can be organized by organizing its daily routines (time 

to get up and go to bed, meals, schedule of tools it works with, contact with other subjects, work 

methods) in order to release excess skills for the most important in his career.  

The same goes for the collective. Intelligence is then a feature of the group, and hierarchy is again 

something outside that subject. Due to the plasticity of intelligence versus the surrounding limitations, 

the term άefficiencyέ in the military, enterprise, local commune-government, has the weight we know it 

has. I compared it earlier74 to a sausage squeezed on one side to explode on the other.  

Unfortunately, the environment is changing. It also changes in unpredictable ways, so an efficient 

system that tries to follow these changes sooner or later comes to a standstill. As in the saying that even 

roads paved with good intentions can lead us to hell. The hunter will outwit the beast with his excess of 

intelligence, typical of originality that is not on the planned paths, unlike routines.  

Q: Is there any certainty that an efficient system will sooner or later become obsolete?  

A: Yes, and look for proof of this in Gödel's theorem of impossibility. An organization that would be so 

effective that it does not become obsolete would be able to adapt to any change. But such would not be 

possible, because changes can be unpredictable for any pre-given system of constraints, such as truths 

that cannot fit into any concept of logic (e.g. arithmetic, algebra, mathematics), so any way of organizing 

will eventually show failure.  

The material world is slowly losing information. The entropy of the substance of the cosmos increases as 

its information decreases75 and goes into space which is increasing. We are becoming an environment 

whose interior design is improving, certainties are growing and we look more and more like someone 

who closes windows and doors away from the outside. At the same time, external uncertainties will not 

disappear, they will only concern us less, but that process does not go to the very end, until the 

complete disappearance of information.  

Assuming that space, time and matter consist of the information itself, and that the essence of this is 

uncertainty, and all this together with the laws of conservation, there is no conclusion that in the end 

unpredictability can completely disappear. With such, any secure, safe and efficient system of rules, 

precisely because they will have more limitations than the outside world, will have to become obsolete.  

                                                           
73

 information and probabilities  
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 [2], 2.3 Information of Perception I  
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 official physics would not agree with me on this  
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Q: If we imagine a system as big as the whole universe. Could it be that it does not become obsolete?  

:s No. No matter how the universe is, she is also some information and, therefore, uncertainty 

considering her environment. Therefore, it is not possible to fully predict and describe her, nor is it 

possible to design her relationships in advance. In that sense, the universe itself is not and cannot be a 

sufficiently organized system that could άnot become obsoleteέ.  

Perception information  

We can draw different interpretations from the scalar product of the vector, and among them we will 

find different explanations of the information of perception. Confusion about such content is most often 

caused by our prejudices in understanding information.  

Question: How is it possible to use the term άperception informationέ for something that should be 

called άǇŜǊŎŜǇǘƛƻƴ probabilityέ?  

Answer: The question is clear to me, it is well asked. The absurdity of replacing the words άprobabilityέ 

and άinformationέ comes from their supposed άclear and differentέ meaning. More likely events are less 

informative; the first implies the realization of larger values, the second smaller ones. But not 

everything76 about them is so black and white.  

When an event ὃ is almost certain and the probability ὴ ὖὃ that it will happen is approximately one 

(ὴO ρ), then the opposite event ὃ is almost impossible and the probability that it will not happen 

ή ὖὃ is approximately zero (ήO π). In general it is ὴ ή ρ, so based on the functional analysis 

(by developing the logarithmic function in series) we get the relation  

ή ὦϽÌÏÇὴ,                                                                       (6) 

where ὦ π is a constant that determines the unit of information.  

Therefore, in the summands of information perception (1) the second factors may be probabilities (that 

the given events will not happen), thus they become information of their realization. The more 

άimpossibleέ such events are, the more likely they are to approximate Hartley's information (the 

logarithm of probability) of their negation, and such are mostly the prohibitions of natural laws and solid 

hierarchies.  

So, when we talk about άperception informationέ in the basic sense, as a scalar product of άintelligenceέ 

and άhierarchyέ, then we aim at such expressions.  

Another example is Shannon's information  

Ὓ ὴÌÏÇὴ ὴÌÏÇὴ Ễ ὴÌÏÇὴ,                                    (7) 
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where ὴ is the probability distribution, and Ὓ is the mean value (mathematical expectation) of their 

individual information. I leave the choice of the logarithm base to the reader.  

The logarithms of the numbers ὴɴ πȟρ are negative and Shannon's information is a positive real 

number. When the first factors make a descending sequence then the second make a growing one, so 

the expression Ὓ represents a kind of minimum. If these factors were matched so that both form a 

descending sequence, or both ascending, the sum of the items would be maximal. On the contrary, this 

expresses the minimalism of the mean value of the probability distribution information.  

If the number of choices of probability distribution (7) were very large (ὲᴼЊ), and the probabilities 

were more or less uniform, then according to the previous one we could write ὴ ÌÏÇή, 

respectively for each Ὧ ρȟςȟȣȟὲ, where ήᴼρ are the probabilities that the Ὧ-th event will not 

occur. Then άperception informationέ could be said to represent a scalar product of vectors of 

components that are not probabilities, but information.  
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12. Quantity of Options II I 
March 14, 2021 

The text is a continuation of the topic άquantity of optionsέ now on complex numbers, vector 

multiplication and correlation.  

Complex numbers  

In the picture on the left is Descartes' rectangular coordinate system ὕὼώ and in it the point ᾀ ὼȟώ.  

 

We put  
ᾀ ὼ Ὥώ,  

where is also the imaginary unit Ὥ for which Ὥ ρ, where ᾀ becomes 
a complex number and the plane ὕὼώ a complex. Unlike the set of real 
numbers R, for a set of complex the mark C is the same as for a 
complex plane. Note, ὼȟώᶰᴙ, or ᾀɴ ᴇ.  

The imaginary unit has the position Ὥ πȟρ, while the coordinates of the real unit are ρȟπ. As we 

know, the conjugate complex number of the number ᾀ ὼ Ὥώ is the number ᾀᶻ ὼ Ὥώ, in the 

following figure on the right. 

The abscissa (ὼ-axis) is the axis of symmetry of conjugate complex 
numbers, so Ὢᶻᾀ and Ὢᾀ will be axially symmetric with respect to it, 
for each real function Ὢὼ, and hence Ὢᶻᾀ Ὢᾀᶻ. That is why ὪᶻὪ 
is a real number, it lies on the abscissa, because ὪᶻὪᶻ ὪᶻὪ.  
 
In particular we see this from ᾀᶻᾀ ὼ Ὥώὼ Ὥώ ὼ ώ ᶰᴙ. 
It follows that the square of the modulus of a complex number, its so-
called absolute values, can be defined by the distance of a point, which 
represents it in a complex plane, from the origin:  

ȿᾀȿ ὕᾀ Ѝᾀzᾀ. 
 

That definition consistently applies to real numbers as well. 

In the polar coordinates (ὕὶ•), the notation of the point ᾀ ὼ Ὥώ becomes ᾀ ὶÃÏÓ• ὭÓÉÎ• , 

and its conjugate complex ᾀᶻ ὶÃÏÓ• ὭÓÉÎ• , where ὶ ȿᾀȿ. This is usually and easily obtained 

from the transformation of Cartesian coordinates into polar ones, for the derivation of which the 

trigonometry of a right triangle is sufficient. A little more complex is the proof of the equality of the so-

called ÃÉÓ• ÃÏÓ• ὭÓÉÎ•functions  

Ὡ ÃÏÓ• ὭÓÉÎ• ,                                                                (1) 

which was first found by Euler77 and named after him. Euler is known for his great contribution to the 

development of power series, displaying functions in the form of sums of an infinite number of 

summands, such as:  

                                                           
77

 Leonhard Euler (1707-1783), Swiss-German-Russian mathematician.  
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                                  (2) 

whence by multiplying the sine by the imaginary unit and adding the cosine, then putting ύ Ὥ• we get 

(1). Euler's number Ὡ ςȢχρψςψȣ is irrationally transcendent.  

Starting from (1), the definition of logarithm78 and Hartley information, it is possible to define 

άgeneralized informationέ, moreover, to recognize it in the solution of Schrödinger's equation  

ᴐ
ᶯ y►ȟὸ Ὥᴐ y►ȟὸ,                                                      (3) 

where y  is the wave function of the particle at place ► at time ὸ. The solution for a particle of 

momentum ▬ or wave vector ▓, with angular frequency or energy Ὁ, is given by a complex wave ‫ 

plane  

y►ȟὸ ὃὩ▓Ͻ► ὃὩ▬Ͻ► Ⱦᴐ,                                                (4) 

with amplitude ὃ and ‫
ᴐ

 (or equivalent Ὁ ) in case the particle has mass ά, or ‫ Ὧὧ for 

particle without mass (in rest).  

Multiplication  

Each sequence of ὲᶰᴓ numbers can be represented by the vector ╪ ὥȟὥȟȣȟὥ  of some Ὓ 

vector space (ὕὼὼȣὼ). In the Euclidean sense, the intensity, or norm, of the vector is its length  

ὥ ȿ╪ȿ ὥ ὥ Ễ ὥ,                                                            (5) 

and in general it is a quantity from the rich treasury of measure theory. Certainly, a vector is zero when 

its intensity is zero, and a άlargerέ vector is of greater intensity. Changing the system does not change 

the norm.  

Every two non-zero vectors, such as the mentioned ╪ and some ╫ ὦȟὦȟȣȟὦ , determine only one 

plane ὕ╪╫, as in the following figure. They belong to the new Ὓ coordinate system ὕὼώ, where:  

ὕὃ ȿ╪ȿ ὥ,  ὕὄ ȿ╫ȿ ὦ;  ὃ ὃȟὃ ,  ὄ ὄȟὄ .  

The angle between the given vectors is preserved  

• ᷃ὃὕὄ ‍ ‌;  ‌ ᷃ὼὕὃ,  ‍ ὼὕὄ. 
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The vertical projection of point ὄ on the line ὕὃ is point ὄᴂ, and the length of the segment ὕὄᴂ ὕὄϽ

ÃÏÓ•. The scalar (inner) product of the given vectors has the same value in both systems  

╪Ͻ╫ ȿ╪ȿȿ╫ȿÃÏÓ•.                                                              (6) 

In the initial, using the property of orthogonality of each pair of ὲ coordinate axes and because 

ÃÏÓωπЈπ, we easily obtain  

╪Ͻ╫ ὥὦ ὥὦ Ễ ὥὦ,                                                (7) 

and that is a scalar (number) equal to (6).  

 

Note that the area P of the triangle ὕὃὄ in the figure is equal to the pseudoscalar79 product of the base 

ὕὃ and the height ὄὄᴂ. Since ὄὄᴂ ὕὄÓÉÎ•, we define a pseudoscalar product  

╪Ḉ╫ ȿ╪ȿȿ╫ȿÓÉÎ•                                                              (8) 

and thus the area ╪Ḉ╫ ςPὕὃὄ. The same area of triangle ὕὃὄ can be obtained by subtracting 

the area of triangle ὃὕὃ  from the sum of the areas of triangle ὄὕὄ and the trapezoid ὃὄὄὃ  , so:  

Pὕὃὄ ὄὄ ὄ ὃ ὃ ὄ ὃὃ ὃὄ ὄὃ .  

If we introduce the label  

ὃȟὄ ὃὄ ὄὃ ,                                                                  (9) 

which I call the άcommutatorέ of points ὃὃȟὃ  and ὄὄȟὄ , will be ╪Ḉ╫ ὃȟὄ. The 

commutator of points, ie the pseudoscalar product, is actually the intensity of the vector product of the 

vectors ὕὃᴆ ὕὄᴆ.  

We understand the information of perception80 in the way of a scalar product (6), for example, when the 

coefficients of both vectors are probabilities, in the extreme case when the vectors ╪ and ╫ represent 
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probability distributions, so their larger product means a more probable occurrence. In contrast, 

perception information81 is better understood in the form of a pseudoscalar product (8) when it 

represents, for example, άequal surfaces that the radius vectors of the planets erase at equal times 

orbiting the Sunέ (Kepler's Second Law).  

Correlation  

In larger cities, people walk faster, where people walk faster, there is a higher percentage of 

cardiovascular diseases. This is a recent example of a more difficult correlation. The more well-known 

ones are, the more we run the more calories we burn, the longer the hair the more shampoo we spend 

on it, or by salting food the more we have higher blood pressure. Note that the opposite is not always 

the case, for example, you may have high blood pressure without a salty diet.  

In statistics textbooks, when correlation is studied and the possibility of drawing erroneous conclusions 

based on it is pointed out, the phenomenon observed in Copenhagen a few years after the Second 

World War is often mentioned. A positive correlation was noticed between the number of newborn 

children and the number of storks that nested in that city. However, it does not mean that storks bring 

children, but it is a consequence of the relocation of the population from the countryside to the city in 

the time after the war. With the arrival of the new population, there was an increased number of 

newborn children and the construction of houses with chimneys on which additional storks could place 

their nests.  

In general, correlation (lat. con = with, relatio = relationship) is the interrelationship or mutual 

connection of two different phenomena represented by the values of two variables. Let the first and the 

second be given by their data series, ╪ ὥȟὥȟȣȟὥ  and ╫ ὦȟὦȟȣȟὦ . For each of the series 

we find the mean value separately, their own centers of gravity:  

ὥ
Ễ

,  ὦ
Ễ

.                                                    (10) 

Subtract their mean values from the components of vectors ╪ and ╫. We obtain new coefficients 

ὥᴂ ὥ ὥ and ὦᴂ ὦ ὦ for the indices Ὦ ρȟςȟȣȟὲ orderly, the two new vectors:  

╪ ὥ ὥȟ ὥ ὥȟȣȟὥ ὥ,  ╫ ὦ ὦȟὦ ὦȟȣȟὦ ὦ.                (11) 

What happens then is shown simplified (ὲ σ) in the following figure on the left.  

Triangle ὃὃὃ defines a plane and a coordinate system. Point Ὕ is the center of gravity of the triangle, 

and point ὕ is the origin of the coordinate system. Only one of the axes of that system and the 

projection of all points (from the picture) on that axis are important to us. The components of the first of 

the above vectors, vector ╪, are in order:  

ὥ ὕὃ,  ὥ ὕὃ ,  ὥ ὕὃ . 
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˻͔ͤ ͨͦͫͭ͊ͯ͞ ͔͔ͦͣͨͦͤͤͭ͟ ͔͙ͭ͗΄͙ͤͻ ͍͔ͭͦͪ͊͟Υ 

ὥᴂ Ὕὃ,  ὥᴂ Ὕὃ ,  ὥᴂ Ὕὃ . 
The explanation for vector ╫ is similar. 
 
We calculate the intensities of these vectors:  

ὥ ȿ╪ᴂȿ ὥᴂ ὥᴂ Ễ ὥᴂ

ὦ ȿ╫ᴂȿ ὦᴂ ὦᴂ Ễ ὦᴂ
       (12) 

According to the Cauchy-Schwartz inequality, the 
scalar product of two vectors is not greater than 
the product of their intensities (╪ᴂϽ╫ᴂ ȿ╪ᴂȿȿ╫ᴂȿ), 

so the correlation coefficient  

ὶ
╪Ͻ╫

ȿ╪ȿȿ╫ȿ
,                                                                          (13) 

is real number from the interval ρȟρ. When πȢςπ ὶ πȢςπ the correlation is nil or negligible. 

When πȢςπ ȿὶȿ πȢτπ the connection is easy. When πȢτπ ȿὶȿ πȢχπ the connection is real or 

significant. When πȢχπ ȿὶȿ ρȢππ the correlation is high or very high.  

Calculating the correlation coefficient (13) is a typical task of statistics. The data are then observed 

paired:  

ὥȟὦ ,  ὥȟὦ Σ ΧΣ  ὥȟὦ ,                                                        (14) 

and the connection with the άcenter of gravityέ like the one in the previous picture is not important. 

However, when we observe two such centers of gravity (ὲ-tuple of points) with corresponding center of 

gravity vectors (strokes from center of gravity to points, vertices) and vertices (points), we can notice 

their different orientations. The orientation of the correlation can be mapped to shapes, not just 

numbers, as shown in the following figure.  

 

The first two triangles (red) are negatively correlated, and the next two (blue) are positively correlated. 

In this kind of visual comparison, analogous to the calculation of the correlation, the size of the triangles 

is not important, but only their geometry. A special way of understanding correlation, of course, is the 

information of perception.  

 

  



Notes to Information Theory II 

Rastko Vukoviŏ                                                                             68 
 

13. Shape recognition  
About three types of networks and correlation  

March 17, 2021  

Free networks  

Graph theory is a very common field of mathematics in computer science as well. Its goal is to study the 

properties of nodes, i.e. points or vertices, connected by lines or branches. The three types of graphs 

that are most important to us are the άnetworksέ shown in the following figure.  

 

The first on the left is the άsmall-world networkέ, a type of graph in which most nodes are not 

immediate neighbors, but their neighbors are mostly. The predominant number of peaks of this type is 

loaded with a large number of lines due to shorter journeys between nodes. Expressed by the total 

number ὔ of points of the network, the average number of links between the two is  

ὒᶿÌÏÇÌÏÇὔ.                                                                         (1) 

For example, in the base of the natural logarithm ̆ ςȢχρψςψȣ, for the number of nodes ὔ ρπ, we 

find ÌÏÇὔ ρψȟτςπχ and ὒ ÌÏÇρψȟτςπχςȟωρστχ. So, it takes (on average) less than three steps 

to an arbitrary another place in the άsmall worldέ network with one hundred million positions.  

The second, in the middle of that picture is άscale-free networkέ. The hub, i.e. center, concentrator or 

άpileέ of the network is a node whose number of connections significantly exceeds the average. Such a 

network is some optimum of the load by the links and the length of the paths between the nodes  

ὒᶿ .                                                                          (2) 

For example, for the natural logarithm and number of nodes from the previous case (bases Ὡ and 

ὔ ρπ) we now get L_2=6.32258. Through a free network with one hundred million nodes, you can 

reach another arbitrary node with about six steps.  
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A new free network node is more likely to bind to a multi-link node. This is precisely because the 

probabilities of the links are equal. Due to the equality of the branches, the new peaks are referred to 

the existing, with the probabilities proportional to the number of the current  

ὴ
В

,                                                                             (3) 

where ὴ is the probability of connecting the new node with the Ὥ-th existing one, and Ὧ is the number 

of connections of the Ὦ-th node.  

If the number of links per topic were balanced, as in the picture of the άrandom networkέ above right, 

where Ὧ is approximately constant, then the probability distribution would be uniform and of the order 

of ρȾὔ for each topic. However, the free network follows the degree distribution, at least 

asymptotically, with probability   

ὴὯᶿὯ                                                                              (4) 

of the nodes with Ὧ connections. The parameter ‎ is usually a number from 2 to 3. 

That is why a small number of large intersections stand out against a large number of small ones in the 
free-growing road network; only some celebrities are very famous unlike many; special books are the  

 

bestsellers; about 80 percent of web links point to 
15 percent of web pages. All of them form the so-
called free networks. Pareto82 was the first to 
notice the mentioned legality in the enrichment of 
the few on the free market of goods and money. 
 
The figure on the left shows the degree function 
of decreasing the participation of nodes with the 
number of connections Ὧ, along with the bell 
(Gaussian) distribution of approximately uniform 
distribution which, it is said, has the third type of  

network from the previous image. This third type does not burden its nodes with excess links at all, but  
at the cost of having very long paths between the 
nodes. 
 
Details on the path lengths through the nets (1) 
and (2) can be found in the appendices [17] or 
[18]. The following figure on the right shows once 
again examples of άfree networkέ on the left and 
άrandomέ on the right. Even more complex, these 
networks can be so vague that it becomes difficult   
to assess which type they belong to.  
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If it seems to you that distinguishing a άfreeέ from a άsmallέ or άrandomέ network should be an easy 

task, I recommend that you look at, for example: The Advantages of Attention Surplus Condition, more 

commonly known as Attention Deficit Hyperactivity Disorder83. The question is whether these 

advantages can be understood (modeled) by any of the mentioned networks and by which?  

In the mentioned case, these are the characteristics: 1. Ability to find alternate paths to overcome 

obstacles; 2. Being able to see the big picture; 3. Can create order from chaos; 4. Dedicated; 5. 

Energetic; 6. Flexible ς changes as the situation requires; 7. Good in a crisis; 8. Hands-on workers; 9. Idea 

generator; and other groups listed there. I took the example at random, but the idea is general. 

Recognition of shape (physical appearance, behavior or character, person or appearance) is required.  

Correlation  

Let's count the links of the nodes of the first of the networks from the picture at the beginning of the 

text and arrange the results in sequence in ascending order. It is a άsmall world networkέ, and the 

sequence is obtained: ὥ π, ὥ π, ὥ π, ὥ τ, ὥ ψ, ὥ τ and ὥ π. The notation ὥ ὲ 

means that the first (ὥ-th) network has ὲ nodes with Ὧ connections.  

We calculate the average ὥ , so we form the sequence  ὥᴂ ὥ ὥ  to find the correlation: : 

ὥᴂ ὥᴂ ὥᴂ ὥᴂ , ὥᴂ ὥᴂ , ὥᴂ . The intensity, ie the norm of that sequence is 

ὥ ὥᴂ Ễ ὥᴂ τςφȾχ χȢχπψωω. Concisely:  

ὥ π,      ὥ π,      ὥ π,      ὥ τ,      ὥ ψ,      ὥ τ,      ὥ π,      В ρφ,      ὥ , 

ὥᴂ , ὥᴂ , ὥᴂ , ὥᴂ , ὥᴂ , ὥᴂ , ὥᴂ , ὥ χȢχπψωω. 

We do the same with the number of links of the other, the so-called άŦreeέ networks: ὦ ὦ ὦ π, 

ὦ ρσ, ὦ ρ, ὦ ς and ὦ ρ. Thus ὦ ς  means that the five links have two nodes of the 

second in a row, the ὦ-th network (scale-free network), which is in the first image. The arithmetic mean 

of this sequence is ὦ , so for ὦᴂ ὦ ὦ we get: ὦᴂ ὦᴂ ὦᴂ , ὦᴂ , ὦᴂ ὦᴂ

 and ὦᴂ . The intensity is ὦ ὦᴂ Ễ ὦᴂφ φςφȾχ ρρȢυφσυ. Concisely:  

ὦ π,     ὦ ρσ,     ὦ π,     ὦ ρ,     ὦ π,     ὦ ς,     ὦ ρ,     В ρχ,     ὦ , 

ὦᴂ , ὦᴂ , ὦᴂ , ὦᴂ , ὦᴂ , ὦᴂ , ὦᴂ , ὦ ρρȢυφσυ. 

For the third (άrandomέ network) nodes, in ascending order by number of connections, there are: 

ὧ ὧ ὧ π, ὧ σ, ὧ τ, n͊d ὧ ὧ ρ. The mathematical expectation is ὧ , so the 

correlation sequence is: ὧᴂ ὧᴂ ὧᴂ , ὧᴂ , ὧᴂ   ͙ὧᴂ ὧᴂ . Intensity ὧ

φσȾχ σȢωςχως. Concisely:  
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ὧ π,     ὧ σ,     ὧ τ,     ὧ ρ,     ὧ ρ,     ὧ π,     ὧ π,     В ω,     ὧ , 

ὧᴂ , ὧᴂ , ὧᴂ , ὧᴂ , ὧᴂ , ὧᴂ , ὧᴂ , ὧ σȟωςχως. 

The correlation coefficients84 of these networks (arrays) are:  

ὶ
Ễ Ễ

Ȣ   ȟ
πȢσπρςψς.  

ὶ πȢςψσπχ   and   ὶ πȢσωωττς.  

Thanks to the absence of correlation between the networks, we can capture a wider range of cases, 

applications. Let's look at one example with the distribution of wealth.  

According to the Organization for Economic Cooperation and Development (OECD), in 2012 there was 

лΦс ǇŜǊŎŜƴǘ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ ŀŘǳƭǘ ǇƻǇǳƭŀǘƛƻƴ ǿƛǘƘ ŀǎǎŜǘǎ ƻŦ ƳƻǊŜ ǘƘŀƴ ƻƴŜ Ƴƛƭƭƛƻƴ ¦{ ŘƻƭƭŀǊǎΣ ƳƻǊŜ 

precisely 42 million of the richest people in the world held 39.3% of the world's wealth. The next 4.4%, 

or 311 million people, held 32.3% of the world's wealth. So, the lower 95% held only 28.4% of the 

world's wealth. In particular, the lowest 60 percent of the world's population, in 2012, had the same 

wealth as the 1,226 richest people on the Forbes list.  

It is noticeable that the cited distribution of wealth has the form of the άfree networkέ described here, 

with the coefficient ὦ ρσ which is significantly higher than the others in the ὦ-sequence. This means 

that the distribution of wealth in 2012 does not have the form of an ὥ-sequence or ὧ, i.e. the network of 

άsmall worldέ or άrandomέ, because the distributions of the three series are significantly different. This 

further indicates άequalityέ in capital flows (goods, services, money), ie that the world is mostly a άfree 

marketέ.  

Additional and more precise conclusions that we would draw by interpreting the theorems of άfree 

networksέ might be more interesting, but they are not the topic here. Extending the method to social 

phenomena, to psychology, the physiology of the living world, or physics, one should take into account 

the limitations of estimation by statistical correlation of sequences. If there is a deeper connection, the 

correlation will give confirmation, but it will give false άconfirmationέ sometimes even where there is no 

connection.  
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14. Democracy Evolution  
March 21, 2021  

Parts of discussions on information perception85 and consequences on nature and society. 

Perception information  

- Can you explain the perception information to me with a simple example?  

- Yes, on the example of the strength of chess. For example, the first player is good (grade 3) in the 

opening, very good (4) in the center game, and excellent (5) in the endgame. We arrange the order of 

these estimates with the vector ὥᴆ σȟτȟυ. The power of the game is the intensity or norm of the 

vector, which is here the root of the sum of the squares. Our player has the root of the sum of the 

squares of his three grades, Ѝυπ, approximately 7, or more precisely:  

ὥ ȿὥᴆȿ ЍὥᴆϽὥᴆ Ѝσ τ υ χȟπχρ.                                                (1) 

The second player ὦᴆ τȟσȟς in the opening is very good (4), good (3) is in the center and enough (2) in 

the endgame. The vigor of his game is the root of 29, approximately 5, or:  

ὦ ὦᴆ ὦᴆϽὦᴆ Ѝτ σ ς υȟσψυ.                                                      (2) 

The third player ὧᴆ ςȟσȟτ has the same άplayer powerέ as ὦᴆ, but the άgame powerέ ὥᴆ against ὦᴆ and ὥᴆ 

against ὧᴆ are not equal. Namely, in the competition of the first and second, the information of 

perception is:  

ὥᴆϽὦᴆ σϽτ τϽσ υϽς στ,                                                         (3) 

and in the competition of the first and third the information of perception is:  

ὥᴆϽὧᴆ σϽς τϽσ υϽτ σψ.                                                         (4) 

In case (3) the level of the game was lower than in case (4) when we can say that the game was 

stronger, fiercer, livelier, or more vicious. Heavier play generally has more information of perception, 

because it is the result of multiplying strings of length ὲᶰᴓ, or vectors:  

όᴆϽὺᴆ όȟόȟȣȟό Ͻὺȟὺȟȣȟὺ όὺ όὺ Ễ όὺ                            (5) 

that is greatest if the series are of equal monotony (both increasing or both decreasing). It is the 

smallest in the case of opposite monotony, one series increasing and the other decreasing, both of the 

same length. It can be noticed that we measure the strength of the player himself in an analogous way, 

multiplying the string with itself  

ȿόᴆȿ όȟόȟȣȟό Ͻόȟόȟȣȟό ό ό Ễ ό                                             (6) 
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and that there are a lot of linear algebras in these estimates.  

- Therefore, the product of arrays is less than or equal to the product of their intensities?  

- Yes, bravo, it is the known Schwartz inequality86 ὥᴆϽὦᴆ ȿὥᴆȿὦᴆ, where the equality is valid if and only if 

the vectors (ὥᴆ and ὦᴆ) are collinear (parallel) and therefore proportional.  

- So in application we need to have some way of evaluating players, and the rest is a calculation?  

- That's right, but άevaluationέ is not a simple matter, and after άcalculationέ it is neither an easy task 

nor the interpretation of the results. In fact, interpreting computational results can be more difficult 

than computing it. We only need to remember the άproblem tasksέ from elementary school 

mathematics, when it was harder for us to form an equation than to solve it, or to look a little further at 

quantum mechanics. Even after decades of calculations, no result was found there that would not agree 

with the experiment, and even today we are struggling with the interpretations.  

Order and disorder  

- What would be the main interpretations of information perception?  

- The higher level of the game is άstrong on strong, and weak on weakέ than the reverse άsharp with 

weak and humble with strongέ. That is why the state is in principle stronger than the mafia when it 

behaves άeconomically illogicallyέ, for example by giving subsidies to beginners and taxing the rich, 

unlike (thieving) behavior in which it is kidnapped where possible, mostly from the weak, and stays away 

from the strong. That is why competition on the market is good for society, because it encourages the 

competition of the powerful, and it would be similar with competition in politics, but I would not talk 

about that.  

- And what about the saying that you shouldn't fight with a horn?  

- The information of perception in its basic form (Ὓ ὍᴆϽὌᴆ) is proportional to the (scalar) product of the 

vector (series) of άintelligenceέ and άhierarchyέ. Here, the former refers to a person's ability, and the 

latter to external, objective limitations. In the magnitude of perception (Ὓ), both factors are equally 

important, the relative unpredictability (Ὅᴆ) and constraints (Ὄᴆ). The chess master does not win a dunce 

by hitting him on the head with a wooden board, but with a subtle game.  

- What is άrelative unpredictabilityέ?  

- If a hunter prepares a trap and catches game with it, he is άrelatively unpredictableέ when he knows 

what he is doing and what will be, unlike the catch. That is the essence of intelligence, to be one step 

away from deeper unpredictability ς which is essentially information. The theory of information holds 

that the greater άstrengthέ of the player, i.e. the game, is expressed against more difficult obstacles. It is 

also intuitively acceptable.  
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Due to the law of conservation (information), that power should be saved, so we come to something like 

the former bushido code: άwith the weak sofly (cool) and fighting with the strongέ. Emphasizing the 

importance of the factor Ὄᴆ we will say, the focused power is greater, and it is then directed, that is, 

organized.  

- Hardness (hierarchy) is then as important a contribution to the information of perception as softness 

(intelligence)?  

- That's right. The value of perception information (Ὓ ὍᴆϽὌᴆ) grows equally with both values, in slang 

for softness and hardness, i.e. Ὅᴆ and Ὄᴆ, because the law of commutation, the change of order in this (so-

called scalar) multiplication of vectors and in general due to of equal importance two vectors in their 

product.  

Information is expressed by channeling through constraints. Therefore, it is possible to have an 

organization with a surplus of information in relation to the simple sum of its members87, because the 

organization releases latent information. We will use vehicles more efficiently if the traffic in the city is 

better regulated, or, for example, the ant colony can behave άinexplicablyέ intelligently with regard to 

its individuals.  

I wrote earlier, if we did not have any wisdom (abilities, intelligence, power of choice) in a situation with 

a lot of limitations, then not only would nothing be clear to us, but we would not be able to perceive the 

world around us. The information of perception perceives our world as virtual, formal, or non-essential 

and dependent on the observer. On the other hand, someone would be extremely smart, but in vain, if 

he didn't have (descry) obstacles, he wouldn't see anything either.  

- I understand. These are the positive sides, and which are the negative ones?  

- Greater information of perception means greater vitality, greater άamount of optionsέ of the player or 

game (depending on what is calculated), and the negative is that we all (living and non-living matter) 

tend to calm down. In nature, there is a mild, constant and ubiquitous tendency towards less 

information, communication, and that then means action (because the smallest amounts of information 

are packed into quantum action, products of energy and time).  

This is because more likely outcomes carry less information, and the more likely is more common. Our 

future is evolving towards more probable conditions, and that means less informative. The world is 

evolving towards more order! I emphasize this because modern physics believes otherwise.  

Namely, the entropy is interpreted as a άmessέ, which comes from observing a glass that falls from the 

table and breaks in heart that flies all over the floor and the housewife then has to pick up that mess. 

However, the theory of information views the same process in the opposite way; it views the molecules 

that tend to be evenly distributed as soldiers on the lookout. With uniformity, they become impersonal 

and thus lose (emit less) information!  
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The growth of entropy is a loss (of emission) of information, and only then does its growth not 

contradict the άprobability principleέ ς that more probable phenomena are more frequent.  

So, by increasing the άinformation of perceptionέ, vitality increases, but it is an unnatural process. It is 

like a geyser or a volcano that spews out its contents in defiance of the otherwise mild, constant and 

ubiquitous gravity of the earth, but which sooner or later goes down again. This opposite tendency 

creates tensions and the danger that too strong players will tear themselves or the game system. That is 

how Yugoslavia was broken up, or the World Boxing Federation was divided into three, and the world 

was constantly trying to be divided into two parts, East and West.  

Not only we humans, but also all living beings, even inanimate physical substances, obey the άprinciple 

of least actionέ, which is the opposite of άlivelinessέ. Because of the same, we like to get rid of our 

excesses of freedom (amounts of uncertainty, options), so to submit, unite, and organize. We love safety 

or efficiency, because in addition to the desire to live (to participate in a good game), there is also the 

desire not to live (to calm down).  

Modeling  

- What about computer simulations, can something be learned from them about the άevolution of 

democracyέ?  

- Perhaps, when the notion of άdemocracyέ is specified, then the parameters and causes of its 

άdevelopmentέ. Is it better to evolve into the brave or the obedient, into suffering or into dullness, can 

the state of equality be maintained άby grace or forceέ. For the sake of simplicity, let us limit ourselves 

to something like the latter, to the modern model of society that we want to strive for equality, 

abundance, peace and order. We will be surprised how much you can get from such a άsmallέ 

framework.  

When, on the one hand, we have equality, which maximizes information, and on the other hand, 

principled minimalism, it is clear that they must strengthen tensions over time and stratification. The 

belief that the state can constantly weigh down the system of equality and human rights is equal to the 

belief that with a healthy lifestyle and regular visits to the doctor, we can live indefinitely.  

It is already clear from the logic of free networks that a society dedicated to preserving equality and 

human rights will sooner or later fail because of other values. When communications (goods, money, 

power, initiative) are free, then rare concentrators are formed with many links, versus many nodes that 

have few links, with a growing separation of the two classes. This is similar to the free market situation 

today.  

However, capital and the power that money carries cannot be the only threat of division, nor does it 

have to be the main one, as it seems to us today, but it is a general view that the status quo is 

unsustainable in the long run. A legally regulated society of άpeople of equal chancesέ will shoot at the 

seams because of other importance. It will stratify in accordance with the άuniverse of uncertaintyέ and, 

therefore, perhaps in ways unknown at this time.  
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A society with strong internal cohesion, like an imagined future global and well-connected, will stratify in 

depth. That would be the path to some form of άslave-owning systemέ from which we have already seen 

similar ones.  

For example, the classes of rich and poor today, or previous mass feudal divisions, or those less classical 

divisions into slaves and masters known to us from the United States, South Africa, all the way to 

ancient Sparta, will still have problems with duration. In the end, every organization faces a lag in 

relation to the rest of the world, which is moving away, be it poverty, external threats, the white plague, 

because the organization means a surplus of information and thus an unstable situation that tends to 

decrease.  

A society with weak internal cohesion will stratify like the evolution of living species on earth.  
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15. Variant Vectors   
March 24, 2021 

Simple explanations of covariant and contravariant vectors and their significance, using an oblique 

system of inclination •, rotation by angle —, multiplication of vectors and bases.  

˗̏̒̉ ̒̉̒̓̆̍ 

Consider Cartesian oblique coordinate system ὕὢὣ with angle • between abscissa and ordinate and in it  

 

point ὃ. Its distance from the origin is ὥ ὕὃ, 
parallel projections of ὃ fall on άcontravariantέ 
coordinates ὼȟώ, and the orthogonal on 
άcovariantέ ὼᶻȟώᶻ.  
 
Point ὃ does not have to be on the angle bisector 
•, but the angles with parallel arms are equal, ie. 
᷃ὼᶻὼὃ ᷃ώᶻώὃ •, so we find:  

ὼᶻ ὼ ώÃÏÓ•,  ώᶻ ώ ὼÃÏÓ•.  
Hence the projection transformations:  

ὼᶻ ὼ ώÃÏÓ•
ώᶻ ὼÃÏÓ• ώ

                       (1) 

These are transformations of contravariant coordinates into covariant ones. The reverse is calculated:  

ὼ
ᶻ ᶻ

,   ώ
ᶻ ᶻ

.                                                     (2) 

The triangle ὕὼὃ and the cosine theorem give the square of the distance of the point from the origin  

ὥ ὼ ώ ςὼώÃÏÓ•,                                                            (3) 

in contravariant coordinates. By substituting (2) into (3) we get  

ὥ ὼᶻ ώᶻ ςὼᶻώᶻÃÏÓ•ȾÓÉÎ•.                                            (4) 

which is a square of the same length (3), now expressed by covariant coordinates.  

The angle between the abscissa and the given point seen from the origin ᷃ ὼᶻὕὃ ‌. The triangle 

ὕὼᶻὃ is right-angled and ÃÏÓ‌ ὼᶻȾὥ, or ÃÏÓ• ‌ ώᶻȾὥ. From there:  

ὼᶻ ὥÃÏÓ‌,   ώᶻ ὥÃÏÓ• ‌.                                                (5) 

The double area of the triangle ὕὼὃ are ὥὼÓÉÎ‌ and ὥώÓÉÎ• ‌. They are exactly equal to the area 

of the parallelogram ὕὼὃώ which is ὼώÓÉÎ•. Equalizations give:  

ὼ ,   ώ ,                                                               (6) 
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and these are the expressions for the contravariant coordinates, these slightly more complex than the 

covariant ones (5).  

Rotation  

Let us now consider the rotation of a given system ὕὢὣ into the system ὕὢᴂὣᴂ around the origin ὕ for 
the angle —, as in the figure on right.  
Denote ‌ ᷃ὼὕὃ, so (6) gives:  

ὼᴂ ὥ
ÓÉÎ• ‌

ÓÉÎ•
 

ὥ
ÓÉÎ• ‌ —

ÓÉÎ•
 

ὥ
ÓÉÎ• ‌ÃÏÓ— ÃÏÓ• ‌ÓÉÎ—

ÓÉÎ•
 

ὥ
ÓÉÎ• ‌

ÓÉÎ•
ÃÏÓ— ὥ

ÃÏÓ• ‌ÓÉÎ—

ÓÉÎ•
 

ὼÃÏÓ— ὥ ÓÉÎ—. 

Addition formulas were used: 
ÓÉÎό ὺ ÓÉÎόÃÏÓὺ ÃÏÓόÓÉÎὺ, 
ÃÏÓό ὺ ÃÏÓόÃÏÓὺ ÓÉÎόÓÉÎὺ.  

From (5) and (1) follows ὥÃÏÓ‌ ὼ ώÃÏÓ•, so we calculate further88:  

ὼᴂ ὼÃÏÓ— ὼ ώÃÏÓ•ÃÔÇ• ὥÓÉÎ‌ÓÉÎ— 

ὼÃÏÓ— ὼÃÔÇ• ώÃÏÓ•ÃÔÇ•ÓÉÎ— ώÓÉÎ•ÓÉÎ— 

ὼÃÏÓ— ÃÔÇ•ÓÉÎ— ώÃÏÓ•ÃÔÇ• ÓÉÎ•ÓÉÎ— 

ὼ
ÓÉÎ•ÃÏÓ— ÃÏÓ•ÓÉÎ—

ÓÉÎ•
ώ
ÃÏÓ• ÓÉÎ•

ÓÉÎ•
ÓÉÎ— 

ὼ
ÓÉÎ• —

ÓÉÎ•
ώ
ÓÉÎ—

ÓÉÎ•
 

therefore  

ὼᴂÓÉÎ• ὼÓÉÎ• — ώÓÉÎ—.                                                      (7) 

Similarly, starting from the second equation (6) for the system ὕὢᴂὣᴂ, we obtain:  

ώ
ὥÓÉÎ‌ᴂ

ÓÉÎ•
ὥ
ÓÉÎ‌ —

ÓÉÎ•
ὥ
ÓÉÎ‌ÃÏÓ— ÃÏÓ‌ÓÉÎ—

ÓÉÎ•
 

ώÃÏÓ— ὼ ώÃÏÓ•
ÓÉÎ—

ÓÉÎ•
ὼ
ÓÉÎ—

ÓÉÎ•
ώ
ÓÉÎ•ÃÏÓ— ÃÏÓ•ÓÉÎ—

ÓÉÎ•
 

                                                           
88

 ÃÔÇf ÃÏÔf  ς cotangent angle f 
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ὼ
ÓÉÎ—

ÓÉÎ•
ώ
ÓÉÎ• —

ÓÉÎ•
 

therefore  

ώᴂÓÉÎ• ὼÓÉÎ— ώÓÉÎ• —.                                                      (8) 

Equations (7) and (8) are written briefly in matrix  

ὼᴂ
ώᴂ

ÓÉÎ• — ÓÉÎ—

ÓÉÎ— ÓÉÎ• —

ὼ
ώ,                                             (9) 

that is, ὃ Ὑ •ȟ—ὃ. These are transformations ὕὢὣO ὕὢᴂὣᴂ of contravariant coordinates of the 

Cartesian oblique system, slope • ᷃ὢὕὣ, on rotation around the origin ὕ for the angle —.  

Of course, formulas (9) can also be derived geometrically, from the given figure at the top right.  

Example 1. For a rectangular system, with •  and ÓÉÎ• ρ, ÓÉÎ• — ÃÏÓ—, from (9) we get:  

ὼᴂ
ώᴂ

ÃÏÓ— ÓÉÎ—
ÓÉÎ— ÃÏÓ—

ὼ
ώ.                                                        (10) 

These are well-known formulas for the rotation of Cartesian rectangular 2D coordinate system.  

Example 2. By rotating the system, the distance of a given point from the origin remains the same and 

the contravariant expression (3) retains the form:  

ὥ ὼ ώᴂ ςὼᴂώᴂÃÏÓ• 

ςϽ Ͻ ϽÃÏÓ•  

ὼ

ÓÉÎ•
ÓÉÎ• — ÓÉÎ— ςÓÉÎ• —ÓÉÎ—ÃÏÓ•  

ώ

ÓÉÎ•
ÓÉÎ— ÓÉÎ• — ςÓÉÎ—ÓÉÎ• —ÃÏÓ•  

ςὼώ

ÓÉÎ•
ÓÉÎ• —ÓÉÎ— ÓÉÎ—ÓÉÎ• — ÓÉÎ• —ÓÉÎ• —ÃÏÓ• ÓÉÎ—ÃÏÓ• 

however, the factor next to ὼ in the numerator is:  

ÓÉÎ• — ÓÉÎ— ςÓÉÎ• —ÓÉÎ—ÃÏÓ•  

ÓÉÎ• — ÓÉÎ• —ÓÉÎ—ÃÏÓ• ÓÉÎ— ÓÉÎ• —ÓÉÎ—ÃÏÓ• 

ÓÉÎ• — ÓÉÎ• — ÓÉÎ—ÃÏÓ• ÓÉÎ— ÓÉÎ• —ÓÉÎ—ÃÏÓ• 



Notes to Information Theory II 

Rastko Vukoviŏ                                                                             80 
 

ÓÉÎ• —ÓÉÎ•ÃÏÓ— ÓÉÎ— ÓÉÎ• —ÓÉÎ—ÃÏÓ• 

ÓÉÎ• — ÓÉÎ•ÃÏÓ— ÓÉÎ—ÃÏÓ• ÓÉÎ— 

ÓÉÎ•ÃÏÓ— ÃÏÓ•ÓÉÎ— ÓÉÎ— 

ÓÉÎ•ÃÏÓ— ρ ÃÏÓ•ÓÉÎ— ÓÉÎ• 

and this is shortened with the denominator and only ὼ remains. Similarly, the coefficient with ώ is 

one, so it remains to calculate the coefficient with mixed ὼώ. It is easy to check that in angular brackets 

the sum is reduced to ÓÉÎ•ÃÏÓ•, the first factor (sine square) is shortened by the denominator and 

expression (3) remains.  

Example 3. Prove the transformations:  

ὼᴂᶻ ὼÃÏÓ— ώÃÏÓ• —,                                                         (11) 

ώᴂᶻ ὼÃÏÓ• — ώÃÏÓ—.                                                         (12) 

These equations express the covariant coordinates of the rotated system using the contravariant non-

rotated ones, followed, for example, by the corresponding (1) by including (9). We prove the first:  

ὼᴂᶻ ὼ ώᴂÃÏÓ•  

ὼÓÉÎ• — ώÓÉÎ—

ÓÉÎ•

ὼÓÉÎ— ώÓÉÎ• —

ÓÉÎ•
ÃÏÓ• 

ὼ
ÓÉÎ• — ÓÉÎ—ÃÏÓ•

ÓÉÎ•
ώ
ÓÉÎ— ÓÉÎ• —ÃÏÓ•

ÓÉÎ•
 

ὼ
ÓÉÎ•ÃÏÓ—

ÓÉÎ•
ώ
ÓÉÎ— • • ÓÉÎ— •ÃÏÓ•

ÓÉÎ•
 

ὼÃÏÓ— ώ
ÃÏÓ— •ÓÉÎ•

ÓÉÎ•
 

and hence (11). In the corresponding second equation (1) we include (9) and find:  

ώᴂᶻ ὼÃÏÓ• ώ  

ὼÓÉÎ• — ώÓÉÎ—

ÓÉÎ•
ÃÏÓ•

ὼÓÉÎ— ώÓÉÎ• —

ÓÉÎ•
 

ὼ
ÓÉÎ• —ÃÏÓ• ÓÉÎ—

ÓÉÎ•
ώ
ÓÉÎ—ÃÏÓ• ÓÉÎ• —

ÓÉÎ•
 

ὼ
ÓÉÎ• —ÃÏÓ• ÓÉÎ• — •

ÓÉÎ•
ώ
ÓÉÎ•ÃÏÓ—

ÓÉÎ•
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ὼ
ÃÏÓ• —ÓÉÎ•

ÓÉÎ•
ώÃÏÓ— 

thus proving (12).  

Example 4. Prove the transformations of covariant coordinates:  

ὼᴂᶻ ὼᶻ ώᶻ                                                      (13) 

ώᴂᶻ ὼᶻ ώᶻ                                                   (14) 

using examples 3. and (2). 

Substituting (2) into (11) we get:  

ὼᴂᶻ
ὼᶻ ώᶻÃÏÓ•

ÓÉÎ•
ÃÏÓ—

ὼᶻÃÏÓ• ώᶻ

ÓÉÎ•
ÃÏÓ• — 

ὼ
ÃzÏÓ— ÃÏÓ•ÃÏÓ• —

ÓÉÎ•
ώᶻ

ÃÏÓ•ÃÏÓ— ÃÏÓ• —

ÓÉÎ•
 

ὼ
ÃzÏÓ• • — ÃÏÓ•ÃÏÓ• —

ÓÉÎ•
ώ
ÓzÉÎ•ÓÉÎ—

ÓÉÎ•
 

ὼ
ÓzÉÎ•ÓÉÎ• —

ÓÉÎ•
ώᶻ
ÓÉÎ—

ÓÉÎ•
 

ὼ
ÓzÉÎ• —

ÓÉÎ•
ώᶻ
ÓÉÎ—

ÓÉÎ•
 

thus proving (13). By changing (2) to (12) we get:  

ώᴂᶻ
ὼᶻ ώᶻÃÏÓ•

ÓÉÎ•
ÃÏÓ• —

ὼᶻÃÏÓ• ώᶻ

ÓÉÎ•
ÃÏÓ— 

ὼ
ÃzÏÓ• — ÃÏÓ•ÃÏÓ—

ÓÉÎ•
ώᶻ

ÃÏÓ•ÃÏÓ• — ÃÏÓ—

ÓÉÎ•
 

ὼᶻ
ÓÉÎ•ÓÉÎ—

ÓÉÎ•
ώᶻ

ÃÏÓ•ÃÏÓ• — ÃÏÓ• — •

ÓÉÎ•
 

ὼᶻ
ÓÉÎ—

ÓÉÎ•
ώ
ÓzÉÎ• —ÓÉÎ•

ÓÉÎ•
 

and hence (14).  

Example 5. In the equality of example 4, we include (1) and derive (11) and (12).  
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Starting from (13) and including (1) we get:  

ὼᴂᶻ ὼ
ÓzÉÎ• —

ÓÉÎ•
ώᶻ
ÓÉÎ—

ÓÉÎ•
 

ὼ ώÃÏÓ•
ÓÉÎ• —

ÓÉÎ•
ὼÃÏÓ• ώ

ÓÉÎ—

ÓÉÎ•
 

ὼ
ÓÉÎ• — ÃÏÓ•ÓÉÎ—

ÓÉÎ•
ώ
ÃÏÓ•ÓÉÎ• — ÓÉÎ—

ÓÉÎ•
 

ὼ
ÓÉÎ•ÃÏÓ—

ÓÉÎ•
ώ
ÃÏÓ•ÓÉÎ• — ÓÉÎ• • —

ÓÉÎ•
 

ὼÃÏÓ— ώ
ÓÉÎ•ÃÏÓ• —

ÓÉÎ•
 

ὼÃÏÓ— ώÃÏÓ• — 

and thus formula (11) is obtained. Starting from (14) and substituting (1), we find:  

ώᴂᶻ ὼᶻ
ÓÉÎ—

ÓÉÎ•
ώ
ÓzÉÎ• —

ÓÉÎ•
 

ὼ ώÃÏÓ•
ÓÉÎ—

ÓÉÎ•
ὼÃÏÓ• ώ

ÓÉÎ• —

ÓÉÎ•
 

ὼ
ÓÉÎ— ÃÏÓ•ÓÉÎ• —

ÓÉÎ•
ώ
ÃÏÓ•ÓÉÎ— ÓÉÎ• —

ÓÉÎ•
 

ὼ
ÓÉÎ• — • ÃÏÓ•ÓÉÎ• —

ÓÉÎ•
ώ
ÓÉÎ•ÃÏÓ—

ÓÉÎ•
 

ὼ
ÃÏÓ• —ÓÉÎ•

ÓÉÎ•
ώÃÏÓ— 

ὼÃÏÓ• — ώÃÏÓ— 

and that is formula (12).  

Product  

The square of the distance of a given point from the origin, ὥ ὃὕ, is equal to the scalar product of its 

covariant and contravariant coordinates  

ὥ ὼᶻὼ ώᶻώ.                                                                        (15) 

Namely, the equation (3) follows from:  
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ὼᶻὼ ώᶻώ ὼ ώÃÏÓ•ὼ ὼÃÏÓ• ώώ ὼ ώ ςὼώÃÏÓ• ὥ. 

However, multiplying the contravariant with the contravariant we get a simple sum of squares which in 

the case of an oblique system does not correspond to the square of the distance, ὼ ώ ὥ, but the 

product of the covariant does not correspond to it either.  

The distance from point ὃὼȟώ to point ὄὼ  Dὼȟώ Dώ is  

ὃὄ Dὼᶻ Dὼ Dώᶻ Dώ,                                                         (16) 

where ὼᶻ and ώᶻ denote the covariant coordinates. Namely, by translating the system for the vector ὕὄᴆ, 

so that its starting point is point ὄ, the equation (16) becomes (15). The same is true for infinitesimal 

lengths.  

Due to this peculiarity of coordinate multiplication, and due to the way of matrix multiplication, we 

write covariant vectors as a matrix-row, and contravariant as a matrix-column. Thus (15) becomes:  

ὥ ὼᶻὼ ώᶻώ ὼᶻ ώᶻ
ὼ
ώ ὼᶻ ώᶻ ρ π

π ρ

ὼ
ώ.                                 (17) 

That this also applies in a rotated system is confirmed by applying (13), (14) and (9):  

ὼᴂᶻ ώᴂᶻ
ὼᴂ
ώᴂ

                                                                  (18) 

ụ
Ụ
Ụ
Ụ
ợ

ὼᶻ ώᶻ

ở

Ở
ờ

ÓÉÎ• —

ÓÉÎ•

ÓÉÎ—

ÓÉÎ•
ÓÉÎ—

ÓÉÎ•

ÓÉÎ• —

ÓÉÎ• Ợ

ỡ
Ỡ

Ứ
ủ
ủ
ủ
Ủ

ụ
Ụ
Ụ
Ụ
ợ

ở

Ở
ờ

ÓÉÎ• —

ÓÉÎ•

ÓÉÎ—

ÓÉÎ•
ÓÉÎ—

ÓÉÎ•

ÓÉÎ• —

ÓÉÎ• Ợ

ỡ
Ỡ ὼ
ώ

Ứ
ủ
ủ
ủ
Ủ

 

ὼᶻ ώᶻ

ụ
Ụ
Ụ
Ụ
ợ

ở

Ở
ờ

ÓÉÎ• —

ÓÉÎ•

ÓÉÎ—

ÓÉÎ•

ÓÉÎ—

ÓÉÎ•

ÓÉÎ• —

ÓÉÎ• Ợ

ỡ
Ỡ

ở

Ở
ờ

ÓÉÎ• —

ÓÉÎ•

ÓÉÎ—

ÓÉÎ•

ÓÉÎ—

ÓÉÎ•

ÓÉÎ• —

ÓÉÎ• Ợ

ỡ
Ỡ

Ứ
ủ
ủ
ủ
Ủ
ὼ
ώ 

ὼᶻ ώᶻ ρ π
π ρ

ὼ
ώ ὥ 

from which follows (17) for a rotated system. Matrix multiplication is not commutative but is 

associative, and the latter was used in the proof.  








































































































